Microscopy articles within Nature Chemistry

Featured

  • Article
    | Open Access

    The design of photoactivatable fluorophores—which are required for some super-resolution fluorescence microscopy methods—usually relies on light-sensitive protecting groups imparting lipophilicity and generating reactive by-products. Now, it has been shown that by exploiting a unique intramolecular photocyclization, bright and highly photostable fluorophores can be rapidly generated in situ from appropriately substituted 1-alkenyl-3,6-diaminoxanthone precursors.

    • Richard Lincoln
    • , Mariano L. Bossi
    •  & Stefan W. Hell
  • Article |

    Zinc fluxes have now been shown to be essential in the fertilization of amphibian eggs. Furthermore, manganese(ii), which is initially bound to low-molecular-weight carboxylates, is stored and released with zinc from cortical vesicles following fertilization. This rapid metal ion release blocks the otherwise fatal entry of a second sperm.

    • John F. Seeler
    • , Ajay Sharma
    •  & Thomas V. O’Halloran
  • Article |

    It is difficult to develop suitable fluorescent probes for live-cell nanoscopy, but a general strategy is now reported that can transform regular fluorophores into fluorogenic probes with excellent cell permeability and low unspecific background signals. Using this approach, probes in a variety of colours were developed for different cellular targets and used for wash-free, multicolour, live-cell confocal and STED microscopy.

    • Lu Wang
    • , Mai Tran
    •  & Kai Johnsson
  • News & Views |

    The in situ, nanoscale positioning of a single molecule below the diffraction limit remains a challenge for chemists. Now, two approaches show how this can be accomplished through a combination of super-resolution microscopy and photo-inducible crosslinking chemistry.

    • Limin Xiang
    •  & Ke Xu
  • Article |

    It is difficult to prepare 2D polymers that are crystalline over large areas. Now, few-layer 2D polyimides and polyamides with good crystallinity on the micrometre scale have been synthesized on a water surface. A surfactant monolayer is used to organize amine monomers before their polymerization with anhydride moieties.

    • Kejun Liu
    • , Haoyuan Qi
    •  & Xinliang Feng
  • Article |

    Super-resolution microscopy has enabled optical imaging of individual biomolecules on the nanometre scale. Now, a new method has been developed that allows active manipulation of single-molecule targets on visualization in a sequential manner. This method, called ‘Action-PAINT’, combines real-time super-resolution microscopy (DNA-PAINT) and photoinducible crosslinking chemistry to deliver a single-molecule cargo with <30 nm selectivity.

    • Ninning Liu
    • , Mingjie Dai
    •  & Peng Yin
  • Article |

    Super-resolution fluorescence microscopy techniques can interrogate entities that fluoresce; however, most chemical or biological processes do not involve fluorescent species. Now, the incorporation of a competitive reaction into a single-molecule fluorescence detection scheme has been shown to enable quantitative super-resolution imaging of non-fluorescent reactions.

    • Xianwen Mao
    • , Chunming Liu
    •  & Peng Chen
  • Article |

    Homogeneous crystal nucleation has now been observed by transmission electron microscopy in real time on a molecular scale. Countercation-dependent observations of polyoxometalate proto-crystal formation confirm existence of a higher energy classical molecular attachment mechanism, as well as a lower energy two-step mechanism via an intermediate dense phase.

    • Roy E. Schreiber
    • , Lothar Houben
    •  & Ronny Neumann
  • Article |

    The mammalian oocyte cell cycle is regulated by massive zinc fluxes which culminate in coordinated ejections of ~1010 zinc ions at fertilization. Four single-cell physiochemical approaches (live-cell fluorescence imaging, scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy and tomography) reveal that these ‘zinc sparks’ originate from thousands of cortical vesicles which each release ~106 zinc ions.

    • Emily L. Que
    • , Reiner Bleher
    •  & Thomas V. O'Halloran
  • Research Highlights |

    • Gavin Armstrong
  • Research Highlights |

    • Claire Hansell
  • Article |

    Non-noble-metal-based MoS2 nanostructures are hydrogen evolution catalysts whose active sites are known to be located at the edges. Supported thiomolybdate [Mo3S13]2− nanoclusters have now been prepared that exhibit a structural motif similar to that of MoS2 edges. The nanoclusters, synthesized by a scalable route, demonstrate a high turnover frequency.

    • Jakob Kibsgaard
    • , Thomas F. Jaramillo
    •  & Flemming Besenbacher
  • News & Views |

    Four-dimensional electron microscopy has been applied to the detailed characterization of metal–organic-framework nanoparticles undergoing an electronic transition. The transition characteristics of a single particle were found to differ from those of an ensemble, and also to vary from one nanoparticle to the next.

    • Nigel D. Browning
  • Article |

    Insight into the active zeolitic domains of catalyst particles used in fluid catalytic cracking is limited by the particles' complex nature, but is crucial to improving these billion dollar catalysts. Now, a staining method allows confocal fluorescence microscopy to probe within single catalyst particles, and correlate Brønsted acidity distributions to catalytic activity.

    • Inge L. C. Buurmans
    • , Javier Ruiz-Martínez
    •  & Bert M. Weckhuysen
  • Research Highlights |

    Single metal atoms can be identified within the pores of a zeolite catalyst.

    • Neil Withers
  • News & Views |

    Chemical reactions of fullerenes and metallofullerenes lined up inside single-walled carbon nanotubes can be monitored at the atomic scale inside an aberration-corrected transmission electron microscope.

    • Mauricio Terrones