Mechanical engineering articles within Nature Communications

Featured

  • Article
    | Open Access

    Origami is a popular method to design building blocks for mechanical metamaterials. Here, the authors assemble a volumetric origami-based structure, predict its axial and rotational movements during folding, and demonstrate the operation of mechanical one- and two-bit memory storage.

    • Hiromi Yasuda
    • , Tomohiro Tachi
    •  & Jinkyu Yang
  • Article
    | Open Access

    The development of self-contained electrically driven soft actuators with high strain density is difficult. Here the authors show a single self-contained soft robust composite material that combines the elastic properties of a polymeric matrix and the extreme volume change accompanying liquid vapour transition.

    • Aslan Miriyev
    • , Kenneth Stack
    •  & Hod Lipson
  • Article
    | Open Access

    Minerals are rarely explored as building blocks for dynamic inorganic materials. Here, the authors derive inspiration from fish scales to create mutable surfaces based on arrays of calcite crystals, in which one end of each crystal is immobilized in and regenerated from silicone, and the other functional end is left exposed.

    • Jaeseok Yi
    • , Yucai Wang
    •  & Bozhi Tian
  • Article
    | Open Access

    Growing large single crystals cheaply and reliably for structural applications remains challenging. Here, the authors combine accelerated abnormal grain growth and cyclic heat treatments to grow a superelastic shape memory alloy single crystal to 70 cm.

    • Tomoe Kusama
    • , Toshihiro Omori
    •  & Ryosuke Kainuma
  • Article
    | Open Access

    Metamaterials enable the realization of unique material properties such as coupling between strain and momentum in a fluid—known as Willis coupling. Here, Muhlesteinet al. use homogenization theory to better understand Willis coupling in acoustic metamaterials and demonstrate the unusual material response.

    • Michael B. Muhlestein
    • , Caleb F. Sieck
    •  & Michael R. Haberman
  • Article
    | Open Access

    Principles underlying crumpling of one-dimensional objects may be relevant to both biomolecular processes and to design of mechanical devices. By compacting various wires under rigid confinement and modelling observed geometric features, the authors show how friction, plasticity and torsion enhance disorder and lead to a transition from coiled to folded geometries.

    • M. Reza Shaebani
    • , Javad Najafi
    •  & Mehdi Habibi
  • Article
    | Open Access

    Water treatment processes mostly rely on the use of membranes and filters, which have high pumping costs and require periodic replacement. Here, the authors describe an efficient membraneless method that induces directed motion of suspended colloidal particles by exposing the suspension to CO2.

    • Sangwoo Shin
    • , Orest Shardt
    •  & Howard A. Stone
  • Article
    | Open Access

    Carbon fibres are emerging as a promising material for multifunctional nanotextiles. Here, the authors show that diamond nanothread possesses excellent torsional deformation capability and interfacial load transfer efficiency, ideal for constructing next generation carbon fibres.

    • Haifei Zhan
    • , Gang Zhang
    •  & Yuantong Gu
  • Article
    | Open Access

    Protonic ceramic fuel cells are promising for energy applications, but maintaining high performance with long-term stability is an issue. Here the authors use a stable yttrium-doped barium zirconate electrolyte, achieving a power output one order of magnitude higher than existing protonic ceramic fuel cells.

    • Kiho Bae
    • , Dong Young Jang
    •  & Joon Hyung Shim
  • Article
    | Open Access

    With societies phasing down the use of hydrofluorocarbons (HFCs), alternative environmentally-friendly refrigerants are required. Here the authors screen a large chemical database for replacements, performing simulations to show there are only a few candidate single-component fluids that can realistically replace HFCs.

    • Mark O. McLinden
    • , J. Steven Brown
    •  & Piotr A. Domanski
  • Article
    | Open Access

    Numerous selective forces shape animal locomotion patterns and as a result, different animals evolved to use different gaits. Here, Ramdyaet al. use live and in silicoDrosophila, as well as an insect-model robot, to gain insights into the conditions that promote the ubiquitous tripod gait observed in most insects.

    • Pavan Ramdya
    • , Robin Thandiackal
    •  & Dario Floreano
  • Article
    | Open Access

    Hydrogel actuators have been widely developed to be osmotic-driven but many are in fact only capable of producing low forces. Here, the authors developed high speed and high force hydrogel actuators capable of camouflage optically and sonically with low fatigue over multiple cycles.

    • Hyunwoo Yuk
    • , Shaoting Lin
    •  & Xuanhe Zhao
  • Article
    | Open Access

    Telephone cord blisters constitute a well-known example of patterns generated following buckling in thin films. Here the authors develop an analytical approach that can model the sectional height profiles along the blisters that they measure experimentally and simulate numerically.

    • Yong Ni
    • , Senjiang Yu
    •  & Linghui He
  • Article
    | Open Access

    Shaping ceramics into complex forms is a formidable goal. Here, the authors present an approach to self-shaping ceramics, inspired by self-folding processes in plants, in which the ceramic microstructure is embedded with aligned platelets that control the orientation of heat-induced shrinkage.

    • Fabio L. Bargardi
    • , Hortense Le Ferrand
    •  & André R. Studart
  • Article
    | Open Access

    Twin transmission across grain boundaries has important influence on deformation and fracture in hexagonal close-packed metals. Here, experimental and computational statistical analyses show that whether twins cross grain boundaries depends not only on crystal misorientation but also strongly on anisotropy in crystallographic slip.

    • M. Arul Kumar
    • , I. J. Beyerlein
    •  & C. N. Tomé
  • Article
    | Open Access

    Controlling elastic waves in medium is essential to many applications in mechanical to earthquake engineering. Ma et al. demonstrate selective suppression of different vibrational modes in a three-dimensional rod-shape structure, which shows fluid-like elasticity with only longitudinal waves propagating.

    • Guancong Ma
    • , Caixing Fu
    •  & Ping Sheng
  • Article
    | Open Access

    The wettability properties of graphene hold promise for the realisation of flow control devices. Here, the authors demonstrate that the degree of water penetration through a nickel mesh coated with graphene can be controlled electrically, enabling dynamic locomotion of water droplets.

    • Rassoul Tabassian
    • , Jung-Hwan Oh
    •  & Il-Kwon Oh
  • Article
    | Open Access

    Moving particles on a vibrating plate dates back to 1780s, but it is still challenging to control individual particles in a parallel way. Here, Zhou et al. use a single acoustic actuator and an algorithm to control multiple objects simultaneously and independently for sorting and pattern formation.

    • Quan Zhou
    • , Veikko Sariola
    •  & Ville Liimatainen
  • Article
    | Open Access

    The extensive use of pesticides in agriculture calls for efficient spraying techniques to reduce pollution of soils and groundwater by toxic chemicals. Damak et al. simultaneously spray liquids containing oppositely charged polyelectrolytes that form defects, pinning droplets on targeted surfaces.

    • Maher Damak
    • , Md Nasim Hyder
    •  & Kripa K. Varanasi