Mechanical engineering articles within Nature Communications

Featured

  • Article
    | Open Access

    Conventional material processing methods often suffer by strength-ductility trade-off. Here, the authors show high-pressure and high-temperature treatment can transform an eutectic high entropy alloy to having a hierarchical microstructure with simultaneous enhancements of strength and ductility.

    • Yao Tang
    • , Haikuo Wang
    •  & Haofei Zhou
  • Article
    | Open Access

    The BHMbot provides an efficient running gait and a novel actuation mechanism for insect scale legged microrobots to solve the bottleneck problem of the severe running speed degradation after carrying essential payloads for untethered locomotion.

    • Zhiwei Liu
    • , Wencheng Zhan
    •  & Xiaojun Yan
  • Review Article
    | Open Access

    Untethered soft robots offer numerous advantages in terms of mobility, versatility, and autonomy, making them increasingly valuable for a wide range of applications. Jung et al. review the new types of untethered soft actuators that represent breakthroughs and discuss the future perspective of soft actuators.

    • Yeongju Jung
    • , Kangkyu Kwon
    •  & Seung Hwan Ko
  • Article
    | Open Access

    Pulse tube refrigerators are a critical enabling technology for many disciplines that require low temperatures, including quantum computing. Here, the authors show that dynamically optimizing the acoustic parameters of the refrigerator can improve conventional cooldown speeds up to 3.5 times.

    • Ryan Snodgrass
    • , Vincent Kotsubo
    •  & Joel Ullom
  • Article
    | Open Access

    Here the authors integrate optical and acoustic manipulation techniques to generate localized Lamb fields that emulate arbitrary laser patterns and demonstrate programmable nanoparticle patterning over a centimeter-scale area.

    • Ruoqin Zhang
    • , Xichuan Zhao
    •  & Feng Li
  • Article
    | Open Access

    Achieving facile grain microstructure control in metal additive manufacturing is essential for its advancement. Here, the authors present a powder-size driven melt pool engineering approach to control the grain morphology demonstrated by laser directed energy deposition and electron beam powder-bed fusion processes.

    • Shubham Chandra
    • , Chengcheng Wang
    •  & Xipeng Tan
  • Article
    | Open Access

    Accurate perception of flight parameters is critical for flight control of micro air vehicles. Here, authors present a flexible calorimetric flow sensor with vanadium oxide thermistor arrays for flight parameters estimation, such as angle of attack and sideslip, flight velocity, and wing vibration.

    • Zheng Gong
    • , Weicheng Di
    •  & Huawei Chen
  • Article
    | Open Access

    Detection of radiation is important for environmental health and safety. Here the authors demonstrate a method for radiation detection and mapping in 2D using minimum number of detectors and inter-pixel padding to increase the contrast between pixels.

    • Ryotaro Okabe
    • , Shangjie Xue
    •  & Mingda Li
  • Article
    | Open Access

    Achieving a wide angular response in single layer acoustic metalenses is challenging. By leveraging perfect acoustic symmetry conversion, the authors realize an aberration free metalens with a wide field-of-hearing, up to 140 degrees.

    • Dongwoo Lee
    • , Beomseok Oh
    •  & Junsuk Rho
  • Article
    | Open Access

    Current desalination technologies are energy intensive and suffer from membrane degradation and fouling. Here, authors propose and explore the potential of thermodiffusion as a means of membrane-free, single-phase thermal desalination. A pathway towards a feasible thermodiffusive desalination is provided.

    • Shuqi Xu
    • , Alice J. Hutchinson
    •  & Juan F. Torres
  • Article
    | Open Access

    Many mechanical computation platforms developed till date lack a rational design strategy and have limited computational functions, such as stand-alone single logic gates, or deformation/transition behaviors. Byun at al. have reported a systematic design principle for integrated mechanical computing that enables the electronics-free design of autonomous and intelligent soft machines, which are seamlessly integrated.

    • Junghwan Byun
    • , Aniket Pal
    •  & Metin Sitti
  • Article
    | Open Access

    Direct ink writing of complex 3D gradient structures can be challenging due to inherent method limitations. Here, the authors report continuous diameter-adjustable filament by varying printing speed and height and enable extrusion 3D printers to produce complex gradient porous matters.

    • Huawei Qu
    • , Chongjian Gao
    •  & Changshun Ruan
  • Article
    | Open Access

    Vertical-axis wind turbines offer untapped opportunities for energy generation but suffer from dynamic stall in strong winds. Here, authors implement individual blade pitch control to benefit from stall vortices instead of suppressing them, tripling the power coefficient and reducing load transients by 70%.

    • Sébastien Le Fouest
    •  & Karen Mulleners
  • Article
    | Open Access

    Smartphone cameras have been widely used for analysis purposes, but the use of magnetometers in smartphones is limited in this regard. In this study, the authors present a smartphone analyte sensor platform that utilizes the built in magnetometer to directly translate signals through analyte-responsive magnetic-hydrogel composites.

    • Mark Ferris
    •  & Gary Zabow
  • Article
    | Open Access

    3D-printed glass holds great potential. However, it is challenging to control both the dimension and the resolution of the printed material. Here, authors present a one-photon 3D printing approach to produce high-performance fused silica glass with sub-micron resolution and millimetric dimensions.

    • Ziyong Li
    • , Yanwen Jia
    •  & Xiewen Wen
  • Article
    | Open Access

    Vehicle control systems typically take compliant objects, such as vegetation, as obstacles to be avoided, hindering locomotion through busy mediums. Here, authors present a traversal strategy that considers a drone’s morphology and an obstacle’s compliance to decide between circumventing it or pushing it aside.

    • Emanuele Aucone
    • , Christian Geckeler
    •  & Stefano Mintchev
  • Article
    | Open Access

    Knitted fabrics are prized for their stretchability, breathability, and long-wearability in everyday life. This study combines experiments and simulations to present a micromechanical approach to understanding the origin of the anisotropic elasticity of four canonical patterns of knitted fabrics.

    • Krishma Singal
    • , Michael S. Dimitriyev
    •  & Elisabetta A. Matsumoto
  • Article
    | Open Access

    2D materials are being investigated for several applications in micro- and nanoelectronics, but their weak adhesion represents a critical challenge for device integration. Here, the authors propose a button shear testing method to evaluate the adhesion forces of various large-area 2D films on SiO2 and Si3N4 substrates.

    • Josef Schätz
    • , Navin Nayi
    •  & Max C. Lemme
  • Article
    | Open Access

    Pilot-diesel-ignition ammonia combustion engines effective adoption is still limited by high unburned emissions and low thermal efficiency. Here, authors propose an in-cylinder reforming gas recirculation concept to improve engine thermal efficiency while reducing unburned NH3, NOx, N2O and GHG emissions.

    • Xinyi Zhou
    • , Tie Li
    •  & Wenming Yang
  • Article
    | Open Access

    Continuous industrialization and human activities have led to severe water quality deterioration. Here, a structure-function integrated system is developed by Douglas fir wood inspired metamaterial catalysts with robust and high throughput water purification performances.

    • Lei Zhang
    • , Hanwen Liu
    •  & Jian Lu
  • Article
    | Open Access

    Solidification cracking during fusion welding of high-strength aluminum alloys has been a long-standing issue. Here, the authors achieve reliable and crack-free welding of 2024 aluminum alloy using a Zr-core-Al-shell wire and the oscillating laser-arc hybrid welding technique.

    • Jun Jin
    • , Shaoning Geng
    •  & Xiangqi Wang
  • Article
    | Open Access

    Porosity is a key issue in additive manufacturing (AM). Here, the authors reveal the bubble evolution mechanisms including formation, coalescence, pushing, growth, entrainment, escape, and entrapment during directed energy deposition AM using in situ X-ray imaging and multiphysics modelling.

    • Kai Zhang
    • , Yunhui Chen
    •  & Peter D. Lee
  • Article
    | Open Access

    The Young’s modulus of the MXene Ti3C2Tx, theoretically predicted to be 0.502 TPa, has not yet been experimentally confirmed. This work supplants previous reports using nanoindentation with the correctly measured Young’s modulus of 0.484 ± 0.013 TPa.

    • Chao Rong
    • , Ting Su
    •  & Fu-Zhen Xuan
  • Article
    | Open Access

    Without relying on any infrastructure-based vehicle detectors, the authors present a scalable traffic signal re-timing system that uses a small percentage of connected vehicle trajectories as the only input. Real-world tests demonstrate that the system decreases both delays and number of stops.

    • Xingmin Wang
    • , Zachary Jerome
    •  & Henry X. Liu
  • Article
    | Open Access

    Reduced-order models provide better understanding for complex spatio-temporal dynamics of fluid flows with high numbers of degrees of freedom and non-linear interactions. The authors propose a variational autoencoder and transformer framework for learning the temporal dynamics of the nonlinear reduced-order models relevant for fluid dynamics, weather forecasting, and biomedical engineering.

    • Alberto Solera-Rico
    • , Carlos Sanmiguel Vila
    •  & Ricardo Vinuesa
  • Article
    | Open Access

    Copper produced by laser additive manufacturing often faces challenges with either low strength or low conductivity. Here, the authors present a design strategy to introduce uniformly dispersed nanoprecipitates during solidification, enhancing the strength while maintaining high conductivity.

    • Yingang Liu
    • , Jingqi Zhang
    •  & Ming-Xing Zhang
  • Article
    | Open Access

    The authors introduce a method for non-destructive testing based on circularly polarized ultrasound in solids, enabled by metamaterials, allows for detecting internal defects regardless of their orientation. This innovation will redefine ultrasonic non-destructive examination.

    • Jeseung Lee
    • , Minwoo “Joshua” Kweun
    •  & Yoon Young Kim
  • Article
    | Open Access

    Kinks define boundaries between distinct configurations of a material. Here, the authors reveal the emergence of propagating kinks in purely dissipative kirigami and show that such structures can shape-change into different textures depending on how fast they are stretched enabling basic mechanical tasks.

    • Shahram Janbaz
    •  & Corentin Coulais
  • Article
    | Open Access

    Sensitivity-dependent data analysis methods disrupted the development of artificial olfactory technologies. Here, authors present a data-centric artificial olfactory system based on eigengraph that reflects the intrinsic electrochemical interaction.

    • Seung-Hyun Sung
    • , Jun Min Suh
    •  & Seong Chan Jun
  • Article
    | Open Access

    Developing superior structural materials has been challenging because of the inherent conflict between their strength and toughness. Here, the authors use 3D-printing to produce a high-entropy alloy with a microstructure resembling nano-bridged honeycomb structure with good strength and toughness.

    • Punit Kumar
    • , Sheng Huang
    •  & Robert O. Ritchie
  • Article
    | Open Access

    Conventional desalination processes generate clean water and reject brine to sea, which is harmful to the aquatic life. Here, the authors propose a low- cost scalable and foldable mangrove-mimetic device for solar thermal distillation and passive salt collection without brine discharge.

    • Mohamed A. Abdelsalam
    • , Muhammad Sajjad
    •  & TieJun Zhang
  • Article
    | Open Access

    Four-dimensional (4D) printing ceramics is a challenge due to their weak deformability. Here, the authors report a hydrogel-dehydration-driven direct 4D printing approach, enabling simple and efficient manufacturing of various complex ceramic objects

    • Rong Wang
    • , Chao Yuan
    •  & Qi Ge
  • Article
    | Open Access

    Handheld robots are limited in controllable degrees of freedom, which can result in lower dexterity for clinical applications. Here, Wang et al. report a handheld time-share driven robot with one motor that powers multiple motion modules for high-dextrous operation.

    • Yunjiang Wang
    • , Xinben Hu
    •  & Haoran Jin
  • Article
    | Open Access

    In existing soft robotic sensing strategies, additional components and design changes are often required to sense the environment. Zou et al. introduce a retrofit self-sensing strategy for soft pneumatic actuators, utilizing internal pressure variations arising from interactions.

    • Shibo Zou
    • , Sergio Picella
    •  & Johannes T. B. Overvelde