Infrared spectroscopy articles within Nature Chemistry

Featured

  • Thesis |

    Sit back and settle in for a tour of the chemical analysis instruments aboard the James Webb Space Telescope and the techniques being used to explore the planets beyond our Solar System.

    • Bruce C. Gibb
  • Article |

    The broad infrared spectrum of water in the OH stretching region shows how significantly a water molecule is distorted when within a hydrogen-bonding network; it also raises the question of what the spectrum of a single OH oscillator would be. Now, the spectral signatures of isolated OH oscillators embedded in cold water cages have been measured using vibrational spectroscopy.

    • Nan Yang
    • , Chinh H. Duong
    •  & Mark A. Johnson
  • Article |

    That K+ channels conduct K+ ions at near-diffusion limited rates, but block the passage of smaller Na+ ions, creates an apparent contradiction. Now, atomistic simulations and free-energy calculations are used to show that both K+ permeation and ion selectivity are governed by the direct knock-on of completely desolvated ions in the channels’ selectivity filter.

    • Wojciech Kopec
    • , David A. Köpfer
    •  & Ulrich Zachariae
  • Article |

    Octameric complexes of serine are long known for their special properties, such as their enhanced stability and preference for homochirality. Yet, there is no consensus on their structures. Now, experimental data on the serine octamer–dichloride complex is presented that supports a highly symmetrical, highly stable structure.

    • Jongcheol Seo
    • , Stephan Warnke
    •  & Gert von Helden
  • Article |

    Ultrafast 2D Raman-THz spectroscopy has been applied to investigate the dynamics of the hydrogen-bond networks in aqueous salt solutions. It was demonstrated that the degree of inhomogeneity of the intermolecular modes of the liquid correlates with the structure-making capability of the cation.

    • Andrey Shalit
    • , Saima Ahmed
    •  & Peter Hamm
  • Article |

    Hydrogen fluoride has been encapsulated in C60-fullerene using molecular surgery. The quantum rotor system has been studied by NMR and infrared spectroscopy as well as neutron scattering. The fullerene cage causes a small red-shift in the HF rotational and vibrational constants, and shields around 75% of its dipole.

    • Andrea Krachmalnicoff
    • , Richard Bounds
    •  & Richard J. Whitby
  • News & Views |

    While there is some qualitative understanding of how excess protons behave in acidic aqueous solutions, there is still much to learn about the structures they form with water molecules. Now, 2D infrared spectroscopy has enabled the definite identification of the 'Zundel cation' in protonated liquid water and an approximate determination of its lifetime.

    • Noam Agmon
  • Article |

    Liquid water has the unique ability to mediate ultrafast energy transfer and relaxation in aqueous chemical reactions. Ultrafast broadband two-dimensional infrared spectroscopy that probes vibrations spanning the mid-infrared region with sub-70-femtosecond time resolution now provides evidence for highly intertwined intra- and intermolecular vibrations in water that act to efficiently dissipate vibrational energy.

    • Krupa Ramasesha
    • , Luigi De Marco
    •  & Andrei Tokmakoff
  • News & Views |

    Overcoming drug resistance requires drug–protein interactions that persist in spite of mutations, but such interactions are difficult to characterize. Two-dimensional infrared spectroscopy can reveal the dynamics of how key molecular groups interact, allowing new insights into how some drugs overcome resistance.

    • Christopher M. Cheatum
  • News & Views |

    Obtaining detailed structural information about the interactions between amyloid-forming proteins and inhibitors can be extremely difficult. Two-dimensional infrared spectroscopy has now risen to this challenge to show the mapping of protein–protein contact sites in real time.

    • Minhaeng Cho
  • Article |

    Molecular inhibitors of amyloid formation could help combat Alzheimer's disease, type 2 diabetes, and other major human diseases. Here, two-dimensional infrared spectroscopy and residue-specific isotope labelling are used to obtain detailed structural information on amyloid-inhibitor complexes. The unexpected behaviour observed helps to explain the moderate activity of the inhibitor studied.

    • Chris T. Middleton
    • , Peter Marek
    •  & Martin T. Zanni
  • Article |

    Stepwise deuteration of protonated methane CH5+ — a fluxional structure that undergoes ‘hydrogen scrambling’ — leads to dramatic changes in the infrared spectra of the isotopologues. The spectra can be assigned using ab initio quantum simulations that account for the non-classical occupation — by H and D atoms — of topologically different sites within the molecule.

    • Sergei D. Ivanov
    • , Oskar Asvany
    •  & Stephan Schlemmer
  • Research Highlights |

    Details of how an ion's reactivity is affected by the size and shape of the water network surrounding it have been elucidated using infrared spectroscopy.

    • Gavin Armstrong