DNA computing articles within Nature Chemistry

Featured

  • News & Views |

    Molecular computing programmed with complementary nucleic acid strands allows the construction of sophisticated biomolecular circuits. Now, systems with partially complementary strands have been shown to enable more compact and faster molecular circuits, and may illuminate biological processes.

    • Philip Petersen
    •  & Grigory Tikhomirov
  • Article |

    Synthetic chemical networks with far-from-equilibrium dynamics akin to genetic regulatory networks in living cells could precisely regulate the kinetics of chemical synthesis or self-assembly. Now standardized excitable chemical regulatory elements, termed genelets, that enable predictive bottom-up construction of in vitro networks with designed temporal and multistable behaviour have been developed.

    • Samuel W. Schaffter
    • , Kuan-Lin Chen
    •  & Rebecca Schulman
  • Article |

    The regulation of cellular response to stimuli by genetic regulatory networks (GRNs) suggests how in vitro chemical reaction networks might be used to direct the dynamics of synthetic materials or chemical reactions. Now, multiple functional in vitro transcriptional circuit modules have been integrated to form composite regulatory networks capable of complex features analogous to those found in cellular GRNs.

    • Samuel W. Schaffter
    •  & Rebecca Schulman
  • Article |

    Synthetic gene circuits encapsulated in lipid membrane compartments are often employed as artificial cell mimics, but these lack the complex behaviour of biological tissues. Now, spatial information based on chemical gradients has been used to engineer non-trivial dynamics such as signal propagation and differentiation in an artificial multicellular system.

    • Aurore Dupin
    •  & Friedrich C. Simmel
  • Article |

    Gene expression profiling remains cost-prohibitive and challenging to implement in a clinical setting. Now, a molecular computation strategy for classifying complex gene expression signatures has been developed. Classification occurs through a series of molecular interactions between RNA inputs and engineered DNA probes designed to implement a relevant linear classification model.

    • Randolph Lopez
    • , Ruofan Wang
    •  & Georg Seelig
  • Article |

    Primer exchange reaction (PER) cascades have now been used to grow nascent single-stranded DNA with user-specified sequences following prescribed reaction pathways. PER synthesis occurs in a programmable, autonomous, in situ and environmentally responsive fashion, providing a platform for engineering molecular circuits and devices with a wide range of sensing, monitoring, recording, signal processing and actuation capabilities.

    • Jocelyn Y. Kishi
    • , Thomas E. Schaus
    •  & Peng Yin
  • Article |

    Dynamic nonlinear biochemical circuits are functionally rich; however, this nonlinear nature also makes programming them delicate and painstaking. Now a droplet microfluidic platform reveals precisely the bifurcations of two canonical systems: a bistable switch and a predator–prey oscillator, exposing optimal regions and mechanistic insights that inform the design of these systems.

    • A. J. Genot
    • , A. Baccouche
    •  & Y. Rondelez
  • Article |

    Compartmentalization of complex chemical networks is an essential step towards the creation of cell-scale molecular systems. The encapsulation of a synthetic biochemical oscillating reaction system into cell-sized emulsion droplets is now demonstrated; a large variability in its oscillatory dynamics is observed, which is attributed to partitioning effects.

    • Maximilian Weitz
    • , Jongmin Kim
    •  & Friedrich C. Simmel
  • Article |

    The programmable nature of chemical reactions enables the creation of complex networks; however, it can be difficult to redesign the underlying reactions. Here, systematic and quantitative control over the diffusivity and reactivity of DNA molecules yields highly programmable chemical reaction networks that execute macroscale pattern transformation algorithms, such as edge detection.

    • Steven M. Chirieleison
    • , Peter B. Allen
    •  & Xi Chen
  • News & Views |

    Two separate studies show how DNA tiles can be used in automated assembly processes: one system self-replicates, the second assembles the output of a molecular computation.

    • Greg van Anders
    •  & Sharon C. Glotzer