Characterization and analytical techniques articles within Nature Communications

Featured

  • Article
    | Open Access

    In metallic liquids, the fragility is difficult to predict and measure. Here, the authors present the film inflation method, which reveals large fragility variations across Mg–Cu–Y, and introduce the crystallization complexity as additional contribution to glass forming ability.

    • Sebastian A. Kube
    • , Sungwoo Sohn
    •  & Jan Schroers
  • Article
    | Open Access

    Host-guest interactions can play a critical role in achieving switchable porous materials, but controlling them remains challenging. Here the authors report an atypical pore rearrangement in a magnetic 2D porous framework upon water adsorption; the structural transformation affects the magnetic properties of the material.

    • Jin-Peng Xue
    • , Yang Hu
    •  & Jun Tao
  • Article
    | Open Access

    When a plasma interacts with a surface, different thermal effects may arise. Here, the authors explore plasma interactions with a surface that produce a surface cooling effect.

    • John A. Tomko
    • , Michael J. Johnson
    •  & Patrick E. Hopkins
  • Article
    | Open Access

    While material defect sites are active for chemical reactions, it is important to understand how different defect types impact reactivity. Here, authors prepare Frenkel-defected MoS2 monolayers and demonstrate improved performances for H2 evolution electrocatalysis than pristine or doped MoS2.

    • Jie Xu
    • , Gonglei Shao
    •  & Zhen Zhou
  • Article
    | Open Access

    The detection and quantification of hydrogen is becoming increasingly important in research on electronic materials and devices. Here the authors show that waveguide resonances enhance the sensitivity of neutron reflectometry, enabling fast, direct, and nondestructive measurements of hydrogen incorporation in thin-film structures.

    • L. Guasco
    • , Yu. N. Khaydukov
    •  & B. Keimer
  • Article
    | Open Access

    Chemo-mechanical stress within Li-based batteries detrimentally affects the performance and lifetime of these devices. Here, the authors propose an operando technique using optical fibers embedded in electrodes for internal stress monitoring of cells containing either solid or liquid electrolytes.

    • Laura Albero Blanquer
    • , Florencia Marchini
    •  & Jean-Marie Tarascon
  • Article
    | Open Access

    Useful materials must satisfy multiple objectives. The Pareto front expresses the trade-offs of competing objectives. This work uses a self-driving laboratory to map out the Pareto front for making highly conductive coatings at low temperatures.

    • Benjamin P. MacLeod
    • , Fraser G. L. Parlane
    •  & Curtis P. Berlinguette
  • Article
    | Open Access

    Crystallographic theory suggests austenite-twinned martensite interfaces at specific orientations, but this is not the case for Si-I → Si-II phase transformation. Here the authors show the classically forbidden microstructure by combined experiments, simulations and crystallographic theory.

    • Hao Chen
    • , Valery I. Levitas
    •  & Nenad Velisavljevic
  • Article
    | Open Access

    Passive films on metal surfaces provide better corrosion resistance, but they can degrade in long-term service. Here the authors demonstrate a strategy to engineer crystallographic configuration at the metal/film interface to further improve corrosion resistance.

    • X. X. Wei
    • , B. Zhang
    •  & X. L. Ma
  • Article
    | Open Access

    Photonic crystal (PC)-based sensing is an attractive approach for achieving accurate environmental sensing applications due to its band structure. Here, the authors utilize microwave transmission through PCs and deep learning physics-based data analytics to characterize flowing fluid mixtures.

    • Lang Feng
    • , Stefan Natu
    •  & John J. Valenza
  • Article
    | Open Access

    Direct dark matter searches need to take into account whether the total observation time is lower than the characteristic coherence time of the DM field. Analysing this generally overlooked scenario, here the authors quantify the impact on DM limits of the stochastic nature of the virialised ultralight field.

    • Gary P. Centers
    • , John W. Blanchard
    •  & Andrei Derevianko
  • Article
    | Open Access

    Experimental measurements involving multiple laser and plasma parameters are useful in understanding the relativistic laser-plasma interactions. Here the authors extend the model of holeboring for arbitrary profiles of laser pulse and plasma scale lengths.

    • J. Hornung
    • , Y. Zobus
    •  & V. Bagnoud
  • Article
    | Open Access

    A travelling wave inside a metal slit can reveal its own waveform by probing deflecting motions of charged particles. Here, a real-time THz oscilloscope was demonstrated by utilizing the relativistic electrons and the subwavelength slit waveguide.

    • In Hyung Baek
    • , Hyun Woo Kim
    •  & Young Uk Jeong
  • Article
    | Open Access

    Aqueous Zn metal batteries are a promising system for high-power electrochemical energy storage. Here, the authors investigate a defective V2O3 cathode via neutron and X-ray techniques and test the material in Zn metal cell configuration for 30k cycles.

    • Kefu Zhu
    • , Shiqiang Wei
    •  & Li Song
  • Article
    | Open Access

    Morphology of organic thin film, including the in-plane and out-of-plane directions, plays a crucial role in determining the performance of organic solar cells, yet the characterisation is challenging for the out-of-plane direction. Here, the authors use GTSAXS to uncover the nanomorphology in this dimension, and show how it affects exciton dissociation and charge transfer.

    • Xinxin Xia
    • , Tsz-Ki Lau
    •  & Xinhui Lu
  • Article
    | Open Access

    Skyrmions, a topological spin texture, have been found in a variety of magnetic systems, including quantum hall ferromagnets. Here, Yang et al demonstrate the existence of skyrmions in domain walls in a quantum Hall ferromagnet, and suggest that these skyrmions form a 1D Wigner crystal.

    • Kaifeng Yang
    • , Katsumi Nagase
    •  & Hongwu Liu
  • Article
    | Open Access

    Characterizing an unknown, complex system, like an accelerator, in multi-dimensional space is a challenging task. Here the authors report a Bayesian active learning method - Constrained Proximal Bayesian Exploration - for the characterization of a complex, constrained measurement as a function of multiple free parameters.

    • Ryan Roussel
    • , Juan Pablo Gonzalez-Aguilera
    •  & Auralee Edelen
  • Article
    | Open Access

    Free carriers and electrical polarization coexist in ferroelectric metals. Here, the authors use a capacitive method to probe the electronic compressibility of free carriers in a tunable semimetal, extract the polarized contribution, and study the carrier dependence of the ferroelectric state.

    • Sergio C. de la Barrera
    • , Qingrui Cao
    •  & Benjamin M. Hunt
  • Comment
    | Open Access

    Robust and precise characterization of the interactions between nanoengineered materials and biosystems is vital for the development of safe, efficient diagnostic and therapeutic nanomedicines. This comment discusses the key aspects of nanoparticle characteristics affecting the interpretation of nano-bio interface data.

    • Morteza Mahmoudi
  • Article
    | Open Access

    Artificial sodium channels open up the way to new separation technologies but remains highly challenging. In this work, the authors report an artificial sodium-selective ionic device, built on porous crown-ether crystals with a sodium ion selectivity against calcium ions exceeding that one of biological ion channel counterparts.

    • Tingyan Ye
    • , Gaolei Hou
    •  & Jun Gao
  • Article
    | Open Access

    The limited strength of green parts have been a major hurdle in the Binder Jet Additive Manufacturing. Here the authors apply polyethyleneimine binder to print silica sand structures with double the flexural strength of green parts and 8-fold increase in the strength upon reactive infiltration.

    • Dustin B. Gilmer
    • , Lu Han
    •  & Tomonori Saito
  • Article
    | Open Access

    Balances for nanoparticles such as resonating fluid-filled cantilevers usually probe only mass through changes in oscillation frequency. Katsikis and Collis et al. tap information from previously ignored rotational motion to simultaneously measure particle mass and volume.

    • Georgios Katsikis
    • , Jesse F. Collis
    •  & Scott R. Manalis
  • Article
    | Open Access

    Spatiotemporal dynamic of charge carriers is commonly studied with optical or photoconductivity measurements, yet these techniques come with their own limitations. To circumvent these limits, the authors probe the free-carrier diffusion dynamics of microsecond lifetimes via laser-illuminated microwave impedance microscopy.

    • Xuejian Ma
    • , Fei Zhang
    •  & Keji Lai
  • Article
    | Open Access

    Structural and morphological control of crystalline nanoparticles is crucial in heterogeneous catalysis. Applying DFT-assisted solid-state NMR spectroscopy, we determine the surface crystal and electronic structure of Ni2P nanoparticles, unveiling NMR nanocrystallography as an emerging tool in facet-engineered nanocatalysts.

    • Wassilios Papawassiliou
    • , José P. Carvalho
    •  & Andrew J. Pell
  • Article
    | Open Access

    Despite the important role of ligands in designing nanoparticles, directly imaging them on the nanoparticle surface remains a challenge. Here, the authors use atom probe tomography to map the spatial distribution of ligands on nanoparticles and reveal that the interplay between halide and cetrimonium ligands decides the oxidation resistance and shape of Pd nanoparticles.

    • Kyuseon Jang
    • , Se-Ho Kim
    •  & Pyuck-Pa Choi
  • Article
    | Open Access

    The construction of Z-scheme heterostructures is of great significance for realizing efficient photocatalytic water splitting. Here, the authors report an interfacial chemical bond and internal electric field modulated Z-Scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution.

    • Xuehua Wang
    • , Xianghu Wang
    •  & Zhenjiang Li
  • Article
    | Open Access

    Charge ordering and superconductivity are known to compete in layered cuprates; however, precise real-space characterization of their interplay has been lacking. Here, the authors address this using atomically-resolved cross-sectional scanning tunnelling microscopy and spectroscopy on cryogenically cleaved YBa2Cu3O6.81.

    • Chun-Chih Hsu
    • , Bo-Chao Huang
    •  & Ya-Ping Chiu
  • Article
    | Open Access

    Quantification of Li ions in local area is key to understand the degradation of Li ion batteries. Here the authors report Li compositional gradient evolution in the cathode after charge-discharge cycles using a complementary study via atom probe tomography and scanning transmission electron microscopy.

    • Byeong-Gyu Chae
    • , Seong Yong Park
    •  & Woo Sung Jeon
  • Comment
    | Open Access

    The longevity of a lithium-ion battery is limited by cathode degradation. Combining atom probe tomography and scanning transmission electron microscopy reveals that the degradation results from atomic-scale irreversible structural changes once lithium leaves the cathode during charging, thereby inhibiting lithium intercalation back into the cathode as the battery discharges. This information unveils possible routes for improving the lifetime of lithium-ion batteries.

    • Baptiste Gault
    •  & Jonathan D. Poplawsky
  • Article
    | Open Access

    Studying the development of silk structure is important for understanding material properties and biomimetics. Here, the authors use ex vivo processing to characterise the stages of silk spinning and identify a consolidation phase where transient water pockets emerge due to multiple factors leading to nanofibril coalescence.

    • Quan Wan
    • , Mei Yang
    •  & Mingying Yang
  • Article
    | Open Access

    Assessing mechanics of nanoporous silicon is challenging, but important for new applications. Here, the authors use non-destructive laser-excited elastic guided waves detected contactless, to study dry and liquid-infused single-crystalline porous silicon, revealing its complex mechanics and significant deviations from bulk silicon.

    • Marc Thelen
    • , Nicolas Bochud
    •  & Patrick Huber
  • Article
    | Open Access

    Nanopores have been used for direct observation of RNA structure in native environments but have limited RNA differentiation capabilities. Here, the authors report on the use of Mycobacterium smegmatis porin A nanopores for the trapping and translocation identification of microRNA, siRNA, tRNA and ribosomal RNA.

    • Yuqin Wang
    • , Xiaoyu Guan
    •  & Shuo Huang
  • Article
    | Open Access

    Creating predictable, controllable nanoparticles relies on a mechanistic understanding of their synthesis. Here, through integrated in situ liquid microscopy and first-principles calculations, the authors elucidate the atomistic details involved in the formation of colloidal core-shell nanoparticles.

    • Wenpei Gao
    • , Ahmed O. Elnabawy
    •  & Miaofang Chi
  • Article
    | Open Access

    In-situ methods are important for investigating the local structure and function in molecular nanostructures but such investigations often involve laborious labeling methods that can disrupt behavior or are not fast enough to capture stimuli-responsive phenomena. Here, the authors use X-rays resonant with molecular bonds to demonstrate an in-situ nanoprobe that eliminates the need for labels and enables data collection times within seconds.

    • Terry McAfee
    • , Thomas Ferron
    •  & Brian A. Collins
  • Article
    | Open Access

    While rheology studies have contributed to the understanding of the viscoelastic properties of living cells, the use of higher frequencies promises elucidate the link between cellular and molecular properties. Here authors introduce a rheological assay that measures the cell mechanical response across a continuous frequency range ≈ 1 – 40 kHz.

    • Gotthold Fläschner
    • , Cosmin I. Roman
    •  & Daniel J. Müller
  • Article
    | Open Access

    The competition between the formation of different phases and their kinetics need to be clearly understood to make materials with on-demand and multifaceted properties. Here, the authors reveal, by a combination of complementary in situ techniques, the mechanism of a Cu-Zr-Al metallic glass’s high propensity for metastable phase formation, which is partially through a kinetic mechanism of Al partitioning.

    • Jiri Orava
    • , Shanoob Balachandran
    •  & Ivan Kaban