Astronomy and planetary science articles within Nature Communications

Featured

  • Article
    | Open Access

    Kinetic Alfven Waves (KAWs) are ubiquitous in space plasmas. Here, the authors show that application of particle sounding technique to Magnetospheric Multiscale Mission data enables measuring perpendicular wavelength of KAWs.

    • Z.-Y. Liu
    • , Q.-G. Zong
    •  & G. Le
  • Article
    | Open Access

    Uracil was identified in the sample returned from the asteroid Ryugu. Having been provided to the early Earth as a component in such asteroidal materials, these molecules might have played a role for prebiotic chemical evolution on the early Earth

    • Yasuhiro Oba
    • , Toshiki Koga
    •  & Yuichi Tsuda
  • Article
    | Open Access

    Nanobowls represent building blocks of fullerenes and nanotubes as detected in combustion systems and deep space, but their formation mechanisms in these environments have remained elusive. Here, the authors explore the gas-phase formation of benzocorannulene and beyond to the C40 nanobowl.

    • Lotefa B. Tuli
    • , Shane J. Goettl
    •  & Ralf I. Kaiser
  • Comment
    | Open Access

    NASA’s Double Asteroid Redirection Test (DART) mission intentionally impacted the asteroid Dimorphos on September 26, 2022, and this kinetic impact changed Dimorphos’ orbit around its binary companion Didymos. This first planetary defense test explored technological readiness for this method of asteroid deflection.

    • Andrew S. Rivkin
    •  & Andrew F. Cheng
  • Comment
    | Open Access

    Searching for evidence of life on Mars is a major impetus for exploration. A new study published in Nature Communications finds that current Mars mission instruments lack the essential sensitivity to identify life traces in Chilean desert samples that strongly resemble the martian area currently under study by NASA’s Perseverance rover.

    • Carol R. Stoker
  • Article
    | Open Access

    The origins of the pair of X-ray bubbles, called eROSITA bubbles (eRBs), detected in the halo of Milky Way are debated. Here, the authors show hydrodynamical simulations suggesting circumgalactic medium wind model can explain asymmetric eRBs.

    • Guobin Mou
    • , Dongze Sun
    •  & Zhicheng He
  • Article
    | Open Access

    Scattering by the upper- and lower-band chorus waves are the dominant cause of diffuse auroral precipitation. Here, the authors show that the lower-band chorus alone satisfies the preferred condition for the generation of second harmonics to trigger the diffuse auroral electron precipitation.

    • Xiongdong Yu
    • , Zhigang Yuan
    •  & H. O. Funsten
  • Article
    | Open Access

    The abundances of small Polycyclic Aromatic Hydrocarbons (PAHs) observed in interstellar clouds has surprised astronomers and confounded astrochemical models. Here, the authors show that fast radiative cooling by Recurrent Fluorescence efficiently stabilizes the small PAH cation 1-cyanonaphthalene.

    • Mark H. Stockett
    • , James N. Bull
    •  & Boxing Zhu
  • Article
    | Open Access

    Magnetized plasmas display continuous spectra of current-sheet equilibria. How they select a particular equilibrium is not well understood. Now, equilibrium selection in magnetized plasmas is studied by analytical theory, particle-in-cell simulations and spacecraft observations, highlighting the role of current-sheet relaxation processes.

    • Young Dae Yoon
    • , Deirdre E. Wendel
    •  & Gunsu S. Yun
  • Article
    | Open Access

    Red giant stars enter the clump phase as the helium in the cores start fusing. Here, the authors show evidence for large core structural discontinuities in 7% of Kepler satellite clump star data implying that the mixing region beyond the convective core boundary has a radiative thermal stratification.

    • Mathieu Vrard
    • , Margarida S. Cunha
    •  & Benoît Mosser
  • Article
    | Open Access

    One of the possible events signaling a neutrinoless double beta decay is a Xe atom decaying into a Ba ion and two electrons. Aiming at the realisation of a detector for such a process, the authors show that Ba ions can be efficiently trapped (chelated) in vacuum by an organic molecule layer on a surface.

    • P. Herrero-Gómez
    • , J. P. Calupitan
    •  & J. T. White
  • Article
    | Open Access

    Dust devils are common on Mars and understanding their dynamics is important to gain insights about the meteorology of the planet. Here, the authors show characteristics of a Martian dust devil and its sound from Perseverance rover multi-sensor data combined with modelling.

    • N. Murdoch
    • , A. E. Stott
    •  & D. Mimoun
  • Article
    | Open Access

    Quasi-periodic pulsations (QPPs) are frequently detected in solar and stellar flares, but the underlying physical mechanisms are still to be ascertained. Here, the authors show microwave QPPs during a solar flare originating from quasi-periodic magnetic reconnection at the flare current sheet.

    • Yuankun Kou
    • , Xin Cheng
    •  & Mingde Ding
  • Article
    | Open Access

    Liquid water is key for life as we know it. Here, the authors show even with a modest geothermal heat flow, subglacial oceans of liquid water can form at the base of and within the ice sheets on exo-Earths, which may provide habitable conditions for an extended period.

    • Lujendra Ojha
    • , Bryce Troncone
    •  & George McDonald
  • Article
    | Open Access

    Hayabusa2 mission impact experiment on asteroid Ryugu formed a crater larger than expected. Here, the authors show numerical impact simulations and find that the target cohesion may be very low, indicating the Hayabusa2 impact experiment probably occurred in the transitional cratering regime.

    • Martin Jutzi
    • , Sabina D. Raducan
    •  & Masahiko Arakawa
  • Article
    | Open Access

    The authors report photolytic H atom transfer reactions of HOSO• in astronomical CO & CO2 ices, forming reactive acyl radicals & molecular complexes with SO & SO2. Connecting the photochemistry of S oxides & C oxides in cold molecular clouds in the interstellar medium.

    • Xiaolong Li
    • , Bo Lu
    •  & Xiaoqing Zeng
  • Article
    | Open Access

    The origin of the plateau observed in the early X-ray light curves of gamma ray bursts (GRBs) is debated. Here, the authors show that the observed plateau can be explained within the classical GRB model by considering expanding shell with initial Lorentz factor of a few tens.

    • Hüsne Dereli-Bégué
    • , Asaf Pe’er
    •  & Maria G. Dainotti
  • Article
    | Open Access

    The classical stellar evolution concept assumes that when the stars arrive on the main sequence, there is no traceable mark remains about their early evolutionary history. Here, the authors show that the accretion history leaves an imprint on the interior structure of the stars that are potentially detectable via asteroseismology.

    • Thomas Steindl
    • , Konstanze Zwintz
    •  & Eduard Vorobyov
  • Article
    | Open Access

    Juno spacecraft experienced unknown accelerations near the closest approach to Jupiter. Here, the authors show that Jupiter’s axially symmetric, north-south asymmetric gravity field measured by Juno is perturbed by a time-variable component, associated to internal oscillations.

    • Daniele Durante
    • , Tristan Guillot
    •  & Scott J. Bolton
  • Article
    | Open Access

    It is known that cosmic rays could be accelerated by shock waves in supernova (SN) remnants. Here, the authors show that SN 1006 remnant is an efficient source of cosmic rays, providing observational support for the quasi-parallel acceleration mechanism.

    • Roberta Giuffrida
    • , Marco Miceli
    •  & Giovanni Peres
  • Article
    | Open Access

    Large impacts can create deep lying porosity far away from the crater. This result explains GRAIL’s findings and suggests impacts could support widespread fluid circulation, which has implications for habitable environments on early Earth and Mars.

    • Sean E. Wiggins
    • , Brandon C. Johnson
    •  & Simone Marchi
  • Article
    | Open Access

    We show cryovolcanic eruptions released sufficient methane to source volatile products on Charon. Irradiated methane products are found on other Kuiper belt objects, so endogenically sourced volatiles could be important across the Kuiper belt.

    • Stephanie M. Menten
    • , Michael M. Sori
    •  & Ali M. Bramson
  • Article
    | Open Access

    Polysulfur compounds have been ascribed as the unknown near-UV absorbers in Venusian atmosphere and play a key role in the sulfur chemical cycle of this planet. Here, authors establish their production from (SO)2 on the grounds of quantifications of photochemical and thermal pathways involved in the sulfur chemical cycle of the planet.

    • Antonio Francés-Monerris
    • , Javier Carmona-García
    •  & Daniel Roca-Sanjuán
  • Article
    | Open Access

    Earth’s largest dune fields are set to become less dynamic on average over this century due to anthropogenic climate change, with no future action able to mitigate this effect, as predicted by the newest iteration of CMIP models.

    • Andrew Gunn
    • , Amy East
    •  & Douglas J. Jerolmack
  • Article
    | Open Access

    It is suggested that waves can provide both diffusion and resistivity that can potentially support the reconnection electric field in low-density astrophysical plasmas. Here, the authors show, using direct spacecraft measurements, that the waves contribute to anomalous diffusion but do not contribute to the reconnection electric field.

    • D. B. Graham
    • , Yu. V. Khotyaintsev
    •  & K. Dokgo
  • Article
    | Open Access

    Formation of the Haumea family, the only collisional group of icy bodies in the Kuiper Belt, is debated. Here, the authors show that Haumea family can be explained as a results of binary merging near the end of Neptune’s orbital migration.

    • Benjamin Proudfoot
    •  & Darin Ragozzine
  • Article
    | Open Access

    Dunes may form on Jupiter’s moon Io. Despite a tenuous atmosphere, interactions between widespread lava and sulfur dioxide frost may produce vapor flows dense enough to mobilize sand grains. Ridge-like features may be evidence of this phenomenon.

    • George D. McDonald
    • , Joshua Méndez Harper
    •  & Laura Kerber