Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Mutation screening using fluorescence multiplex denaturing gradient gel electrophoresis (FMD): detecting mutations in the BRCA1 gene

Abstract

Fluorescent multiplex denaturing gradient gel electrophoresis (FMD) is a mutation screening technique designed to detect unknown as well as previously identified mutations. FMD constitutes a recent modification of the standard denaturing gradient gel electrophoresis (DGGE) technique, which combines multiplex PCR amplification of target DNA using fluorescently labeled primers with DGGE separation of the amplicon mixture, allowing immediate identification of sequence variants by wet gel scanning. FMD permits the simultaneous detection of small insertions, deletions and single nucleotide substitutions among multiple DNA fragments (up to 480 fragments) from 96 samples in parallel for each run. It increases output and reduces cost dramatically compared with classical DGGE, without sacrificing sensitivity and accuracy in detecting mutations. This protocol details an accurate, fast, nonradioactive and cost-effective way to screen the BRCA1 gene for mutations with high sensitivity, providing easily interpreted results. It may also be adapted to screen other target genes and/or used in large-scale epidemiological studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: The schematic illustration of the setup of the gradient maker and gel casting apparatus.
Figure 4: Image of FMD detection for BRCA1 nested multiplex short PCR number 6 to amplify target exons 10, 13, 14 and 23 (see Table 4) of the BRCA1 gene.

Similar content being viewed by others

References

  1. Meyer, J.M. & Ginsburg, G.S. The path to personalized medicine. Curr. Opin. Chem. Biol. 6, 434–438 (2002).

    Article  CAS  Google Scholar 

  2. Amundadottir, L.T. et al. A common variant associated with prostate cancer in European and African populations. Nat. Genet. 38, 652–658 (2006).

    Article  CAS  Google Scholar 

  3. Jonson, J.A. & Evans, W.E. Molecular diagnostics as a predictive tool: genetics of drug efficacy and toxicity. Trends Mol. Med. 8, 300–305 (2002).

    Article  Google Scholar 

  4. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467 (1977).

    Article  CAS  Google Scholar 

  5. Sheffield, V.C., Beck, J.S., Kwitek, A.E., Sandstrom, D.W. & Stone, E.M. The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics 16, 325–332 (1993).

    Article  CAS  Google Scholar 

  6. Nataraj, A.J., Olivos-Glander, I., Kusukawa, N. & Highsmith, W.E. Jr. Single-strand conformation polymorphism and heteroduplex analysis for gel-based mutation detection. Electrophoresis 20, 1177–1185 (1999).

    Article  CAS  Google Scholar 

  7. Hamzehloei, T., West, S.P., Chapman, P.D., Burn, J. & Curtis, A. Four novel germ-line mutations in the APC gene detected by heteroduplex analysis. Hum. Mol. Genet. 3, 1023–1024 (1994).

    Article  CAS  Google Scholar 

  8. Zhang, Q. & Minoda, K. Mutation detection and genetic counseling in retinoblastoma using heteroduplex analysis. Jpn. J. Ophthalmol. 39, 432–437 (1995).

    CAS  PubMed  Google Scholar 

  9. Fischer, S.G. & Lerman, L.S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. USA 80, 1579–1583 (1983).

    Article  CAS  Google Scholar 

  10. Sheffield, V.C., Cox, D.R., Lerman, L.S. & Myers, R.M. Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA 86, 232–236 (1989).

    Article  CAS  Google Scholar 

  11. Van Orsouw, N.J. & Vijg, J. Design and application of 2-D DGGE-based gene mutational scanning tests. Genet. Anal. 14, 205–213 (1999).

    Article  CAS  Google Scholar 

  12. Wartell, R.M., Hosseini, S.H. & Moran, C.P. Jr. Detecting base pair substitutions in DNA fragments by temperature-gradient gel electrophoresis. Nucleic Acids Res. 18, 2699–2705 (1990).

    Article  CAS  Google Scholar 

  13. Sorlie, T. et al. Mutation screening of the TP53 gene by temporal temperature gradient gel electrophoresis. Methods Mol. Biol. 291, 207–216 (2005).

    CAS  PubMed  Google Scholar 

  14. Holinski-Feder, E. et al. DHPLC mutation analysis of the hereditary nonpolyposis colon cancer (HNPCC) genes hMLH1 and hMSH2. J. Biochem. Biophys. Methods 47, 21–32 (2001).

    Article  CAS  Google Scholar 

  15. Pazaitou-Panayiotou, K. et al. Efficient testing of the RET gene by DHPLC analysis for MEN 2 syndrome in a cohort of patients. Anticancer Res. 25, 2091–2095 (2005).

    CAS  PubMed  Google Scholar 

  16. Dolinsky, L.C.B., de Moura-Neto, R.S. & Falcao-Conceicao, D.N. DGGE analysis as a tool to identify point mutations, de novo mutations and carriers of the dystrophin gene. Neuromuscul. Disord. 12, 845–848 (2002).

    Article  Google Scholar 

  17. van der Hout, A.H. et al. A DGGE system for comprehensive mutation screening of BRCA1 and BRCA2: application in a Dutch cancer clinic setting. Hum. Mutat. 27, 654–666 (2006).

    Article  CAS  Google Scholar 

  18. Guldberg, P., Henriksen, K.F. & Guttler, F. Molecular analysis of phenylketonuria in Denmark: 99% of the mutations detected by denaturing gradient gel electrophoresis. Genomics 17, 141–146 (1993).

    Article  CAS  Google Scholar 

  19. van Orsouw, N.J. et al. A highly accurate, low cost test for BRCA1 mutations. J. Med. Genet. 36, 747–753 (1999).

    Article  CAS  Google Scholar 

  20. Bounpheng, M. et al. Rapid, inexpensive scanning for all possible BRCA1 and BRCA2 gene sequence variants in a single assay: implications for genetic testing. J. Med. Genet. 40, e33 (2003).

    Article  CAS  Google Scholar 

  21. Schouten, J.P. et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 30, e57 (2002).

    Article  Google Scholar 

  22. Hogervorst, F.B.L. et al. Large genomic deletions and duplications in the BRCA1 gene identified by a novel quantitative method. Cancer Res. 63, 1449–1453 (2003).

    CAS  PubMed  Google Scholar 

  23. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71 (1994).

    Article  CAS  Google Scholar 

  24. Kuperstein, G., Jack, E. & Narod, S.A. A fluorescent multiplex-DGGE screening test for mutations in the BRCA1 gene. Genet. Test. 10, 1–7 (2006).

    Article  CAS  Google Scholar 

  25. Bateman, J.F. et al. Reliable and sensitive detection of premature termination mutations using a protein truncation test designed to overcome problems of nonsense-mediated mRNA instability. Hum. Mutat. 13, 311–317 (1999).

    Article  CAS  Google Scholar 

  26. De Benedetti, V.M. et al. Screening for mutations in exon 11 of the BRCA1 gene in 70 Italian breast and ovarian cancer patients by protein truncation test. Oncogene 13, 1353–1357 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The information for the primer sequences was kindly provided by Dr. Jan Vijg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A Narod.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Kuperstein, G. & Narod, S. Mutation screening using fluorescence multiplex denaturing gradient gel electrophoresis (FMD): detecting mutations in the BRCA1 gene. Nat Protoc 1, 3101–3110 (2006). https://doi.org/10.1038/nprot.2006.445

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.445

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing