Review in 2022

Filter By:

Article Type
Year
  • With recent advancements in the Internet of Things (IoT), indoor organic photovoltaic devices (iOPVs) have attracted increasing attention because of their potential utility as self-sustainable, eco-friendly power sources. This review highlights emerging iOPV technologies based on π-conjugated polymers and oligomeric materials and outlines their fundamental principles and characterization techniques.

    • Sunbin Hwang
    • Takuma Yasuda
    ReviewOpen Access
  • Chemical design strategies developed in the last decade for conjugated polymer binders in lithium-ion batteries (LIBs) are reviewed here. The first part of this review discusses the mechanism of operation and role of binders in LIBs, and the importance of conductivity in advanced binder systems. The second part of this review gives an account of various conducting polymer binders developed for cathodes and anodes of LIBs. The review concludes with an emphasis on sustainable synthetic design strategies for next-generation conducting polymer binders for greener electrochemical energy storage systems.

    • Pratyusha Das
    • Barry C. Thompson
    Review
  • This review is focused on evolutions of precision radical polymerizations in various directions from metal-catalyzed Kharasch addition or atom transfer radical addition (ATRA). The developments include metal-catalyzed living radical polymerizations via reversible activation of carbon-halogen bonds, metal-catalyzed step-growth radical polymerizations of designed monomers having an unconjugated vinyl group and a reactive carbon-halogen bond, simultaneous metal-catalyzed chain- and step-growth radical polymerization for producing degradable vinyl copolymers with main-chain ester units, and vinyl monomer sequence control via combinations of iterative ATRAs and various controlled polymerizations.

    • Masami Kamigaito
    Review
  • Academia and industry are interested in using autotrophic microorganisms as a sustainable/green production platform to produce biochemical products and commercially relevant commodities, including biopolymers. Unlike heterotrophs that require carbohydrates and amino acids for growth, autotrophs have evolved to fix carbon dioxide and drive metabolic processes utilizing either light (photoautotrophs) or chemical compounds (chemolithotrophs) as energy sources. Here, we review the current state-of-the-art in the construction of autotrophic microbial cell factories for efficient biopolymer production and recent breakthroughs in natural autotrophs focusing on biopolymer production.

    • Pisanee Srisawat
    • Mieko Higuchi-Takeuchi
    • Keiji Numata
    ReviewOpen Access
  • In 1996, the author reported “self-oscillating” polymer gels that spontaneously repeat swelling–deswelling changes in a closed solution without any on–off switching by external stimuli, such as with heart muscle. The gel has an energy converting system provided by an oscillatory chemical reaction called the Belousov–Zhabotinsky (BZ) reaction, which induces periodic mechanical motion of the polymer chain. The author systematically developed self-oscillating polymer gels with approaches ranging from demonstrating fundamental behaviors to constructing material systems for potential applications in biomimetic materials such as autonomous soft actuators, automatic transport systems, and functional fluids causing autonomous sol-gel oscillations, as seen with amebas. In this review, these research developments and recent progress from the author’s group are summarized.

    • Ryo Yoshida
    Review
  • In this review, we overview the recent advances associated with seminal findings in the development of nucleic acid-based fluorescent sensor systems aimed at application for exploring intracellular phenomena. We described the fluorescence signal generation mechanisms of each nucleic acid-based fluorescent sensor, including molecular beacon and quencher-free linear probes, as well as aptamer or DNAzyme-based systems. In addition, cascade hybridization chain reaction and catalyzed hairpin assembly are introduced as methods for amplifying fluorescence signals under isothermal conditions.

    • Aya Shibata
    • Sayuri L. Higashi
    • Masato Ikeda
    Review
  • Research advances in the extraction, structural and conformational characteristics, and biological activities (antitumor, anti-inflammation, immunomodulatory, hypoglycemic activity) of β-glucans from three fungi, Auricularia auricula judae, Lentinus edodes and yeast, as typical representatives, were reviewed, as well as the potential mechanism and the structure-function relationship. Additionally, as-fabricated β-glucan-derived nanocomposite biomaterials as carriers for delivering drugs, genes, nanoparticles, and fluorescence probes were addressed.

    • Huanhuan Chen
    • Ningyue Liu
    • Xiaojuan Xu
    Review
  • The present review focuses on the enzymatic synthesis of unnatural oligosaccharides and polysaccharides linked through strictly controlled α(1→4)-glycosidic linkages by glucan phosphorylase (GP) catalysis. In particular, the recent progress of the enzymatic synthesis of unnatural polysaccharides by GP (isolated from thermophilic bacteria, Aquifex aeolicus VF5)-catalyzed polymerization and related reactions is overviewed. The unnatural substrates have high applicability as practical functional materials in pharmaceutical, medicinal, and biological research fields.

    • Jun-ichi Kadokawa
    Review