Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Creation of softmaterials based on self-oscillating polymer gels

Abstract

In 1996, the author reported “self-oscillating” polymer gels that spontaneously repeat swelling–deswelling changes in a closed solution without any on–off switching by external stimuli, such as heart muscle. They have attracted considerable attention as a new type of gel with an autonomous function that is clearly different from conventional stimuli-responsive gels. The autonomy of the gel is provided by the design, which creates a dissipative structure in the material. The gel has an energy-conversion system involving an oscillatory chemical reaction (called the Belousov–Zhabotinsky (BZ) reaction), which allows periodic mechanical motion of the polymer chain. Since the first report, the author has systematically developed self-oscillating polymer gels from fundamental behavior to construction and demonstration of material systems for potential applications in biomimetic materials, such as autonomous soft actuators, automatic transport systems, and functional fluids exhibiting autonomous sol–gel oscillations similar to those of ameba. Recently, BZ gels with similar properties have sometimes been called “Yoshida gels”. In this review, the research developments and recent progress on self-oscillating polymer gels from the author’s group are summarized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Tanaka T. Collapse of gels and the critical endpoint. Phys Rev Lett. 1978;40:820.

    Article  CAS  Google Scholar 

  2. Tanaka T. Gels. Sci Am. 1981;244:124.

    Article  CAS  PubMed  Google Scholar 

  3. Yoshida R. Design of functional polymer gels and their application to biomimetic materials. Curr Org Chem. 2005;9:1617.

    Article  CAS  Google Scholar 

  4. Liu F, Urban MW. Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci. 2010;35:3.

    Article  CAS  Google Scholar 

  5. Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwödiauer R. 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv Mater. 2014;26:149.

    Article  CAS  PubMed  Google Scholar 

  6. Geryak R, Tsukruk VV. Reconfigurable and actuating structures from soft materials. Soft Matter. 2014;10:1246.

    Article  CAS  PubMed  Google Scholar 

  7. Urban MW, (Ed.). Handbook of stimuli-responsive materials. Weinheim: Wiley-VCH; 2011.

    Google Scholar 

  8. Bhattacharyya D, Schafer T (Eds.). Responsive membranes and materials. John Wiley & Sons, Ltd.; 2013.

  9. Hoffman AS. Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev. 2013;65:10.

    Article  CAS  PubMed  Google Scholar 

  10. Ottenbrite RM, Park K, Okano T, Peppas NA, (Eds). Biomedical applications of hydrogels handbook. New York: Springer; 2010.

    Google Scholar 

  11. Lancia F, Ryabchun A, Katsonis N. Life-like motion driven by artificial molecular machines. Nat Rev Chem. 2019;3:536.

    Article  CAS  Google Scholar 

  12. Choi A, Han H, Kim DS. A programmable powerful and ultra-fast water-driven soft actuator inspired by the mutable collagenous tissue of the sea cucumber. J Mater Chem A 2021;9:15937.

    Article  CAS  Google Scholar 

  13. Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, et al. Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature 1995;374:240.

    Article  CAS  Google Scholar 

  14. Gong JP, Katsuyama Y, Kurosawa T, Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv Mater. 2003;15:1155.

    Article  CAS  Google Scholar 

  15. Okumura Y, Ito K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater. 2001;13:485.

    Article  CAS  Google Scholar 

  16. Haraguchi K, Takehisa T. Nanocomposite hydrogels: a unique rganic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater. 2002;14:1120.

    Article  CAS  Google Scholar 

  17. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, et al. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 2008;41:5379.

    Article  CAS  Google Scholar 

  18. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008;451:977.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 2010;463:339.

    Article  CAS  PubMed  Google Scholar 

  20. Harada A, Takashima Y. Macromolecular recognition and macroscopic interactions by cyclodextrins. Chem Rec. 2013;13:420.

    Article  CAS  PubMed  Google Scholar 

  21. Daly AC, Davidson MD, Burdick JA. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat Commun. 2021;12:753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. Self-oscillating gel. J Am Chem Soc. 1996;118:5134.

    Article  CAS  Google Scholar 

  23. Zaikin AN, Zhabotinsky AM. Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 1970;225:535.

    Article  CAS  PubMed  Google Scholar 

  24. Field RJ, Burger M, (Eds.). Oscillations and traveling waves in chemical systems. New York: John Wiley & Sons; 1985.

    Google Scholar 

  25. Ishiwatari T, Kawaguchi M, Mitsuishi M. Oscillatory reactions in polymer systems. J Polym Sci Poylm Chem Ed. 1984;22:2699.

    Article  CAS  Google Scholar 

  26. Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. Self-oscillating gels. Adv Mater. 1997;9:175.

    Article  CAS  Google Scholar 

  27. Yoshida R, Yamaguchi T, Kokufuta E. Molecular design of self-oscillating polymer gels and their dynamic swelling-deswelling behaviors. J Intell Mater Syst Struct. 1999;10:451.

    Article  CAS  Google Scholar 

  28. Yoshida R, Sakai T, Tambata O, Yamaguchi T. Design of novel biomimetic polymer gels with self-oscillating function. Sci Technol Adv Mater. 2002;3:95.

    Article  CAS  Google Scholar 

  29. Yoshida R. Self-oscillating polymer and gels as novel biomimetic materials. Bull Chem Soc Jpn. 2008;81:676.

    Article  CAS  Google Scholar 

  30. Yoshida R, Sakai T, Hara Y, Maeda S, Hashimoto S, Suzuki D, et al. Self-oscillating gel as novel biomimetic materials. J Control Rel. 2009;140:186.

    Article  CAS  Google Scholar 

  31. Yoshida R. Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel smart materials. Adv Mater. 2010;22:3463.

    Article  CAS  PubMed  Google Scholar 

  32. Yoshida R. Self-oscillating polymer gel as novel biomimetic materials exhibiting spatio-temporal structure. Colloid Polym Sci. 2011;289:475.

    Article  CAS  Google Scholar 

  33. Yoshida R. Self-oscillating gels beating like a heart muscle. Biophysics 2012;8:163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoshida R, Ueki T. Evolution of self-oscillating polymer gels as autonomous polymer systems. NPG Asia Mater. 2014;6:e107.

    Article  CAS  Google Scholar 

  35. Tamate R, Akimoto AM, Yoshida R. Recent advances in self-oscillating polymer material systems. Chem Rec. 2016;16:1852.

    Article  CAS  PubMed  Google Scholar 

  36. Kim YS, Tamate R, Akimoto AM, Yoshida R. Recent developments in self-oscillating polymeric systems as smart materials: from polymers to bulk hydrogels. Mater Horiz. 2017;4:38.

    Article  CAS  Google Scholar 

  37. Yoshida R, Onodera S, Yamaguchi T, Kokufuta E. Aspects of the Belousov–Zhabotinsky reaction in polymer gels. J Phys Chem A. 1999;103:8573.

    Article  CAS  Google Scholar 

  38. Yoshida R, Kokufuta E, Yamaguchi T. Beating polymer gels coupled with a nonlinear chemical reaction. Chaos 1999;9:260.

    Article  CAS  PubMed  Google Scholar 

  39. Yoshida R, Tanaka M, Onodera S, Yamaguchi T, Kokufuta E. In-phase synchronization of chemical and mechanical oscillations in self-oscillating gels. J Phys Chem A. 2000;104:7549.

    Article  CAS  Google Scholar 

  40. Miyakawa K, Sakamoto F, Yoshida R, Kokufuta E, Yamaguchi T. Chemical waves in self-oscillating gels. Phys Rev E. 2000;62:793.

    Article  CAS  Google Scholar 

  41. Yoshida R, Otoshi G, Yamaguchi T, Kokufuta E. Traveling chemical waves for measuring solute diffusivity in thermosensitive poly(N-isopropylacrylamide) gel. J Phys Chem A. 2001;105:3667.

    Article  CAS  Google Scholar 

  42. Sakai T, Yoshida R. Self-oscillating nanogel particles. Langmuir 2004;20:1036.

    Article  CAS  PubMed  Google Scholar 

  43. Sakai T, Hara Y, Yoshida R. Phase transition behaviors of self-oscillating polymer and nano-gel particles. Macromol Rapid Commun. 2005;26:1140.

    Article  CAS  Google Scholar 

  44. Geher-Herczegh T, Wang Z, Masuda T, Yoshida R, Vasudevan N, Hayashi Y. Delayed mechanical response to chemical kinetics in self-oscillating hydrogels driven by the Belousov−Zhabotinsky reaction. Macromolecules 2021;54:6430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maeda S, Hara Y, Yoshida R, Hashimoto S. Peristaltic motion of polymer gels. Angew Chem Int Ed. 2008;47:6690.

    Article  CAS  Google Scholar 

  46. Takeoka Y, Watanabe M, Yoshida R. Self-sustaining peristaltic motion on the surface of a porous gel. J Am Chem Soc. 2003;125:13320.

    Article  CAS  PubMed  Google Scholar 

  47. Sasaki S, Koga S, Yoshida R, Yamaguchi T. Mechanical oscillation coupled with the Belousov–Zhabotinsky reaction in gel. Langmuir 2003;19:5595.

    Article  CAS  Google Scholar 

  48. Ito Y, Nogawa M, Yoshida R. Temperature control of the Belousov–Zhabotinsky reaction using a thermo-responsive polymer. Langmuir 2003;19:9577.

    Article  CAS  Google Scholar 

  49. Inui K, Watanabe T, Minato H, Matsui S, Ishikawa K, Yoshida R, et al. The Belouzov–Zhabotinsky reaction in thermoresponsive core-shell hydrogel microscopes with a tris(2,2′-bipyridyl) ruthenium catalyst in the core. J Phys Chem B. 2020;124:3828.

    Article  CAS  PubMed  Google Scholar 

  50. Yoshida R, Takei K, Yamaguchi T. Self-beating motion of gels and modulation of oscillation rhythm synchronized with organic acid. Macromolecules 2003;36:1759.

    Article  CAS  Google Scholar 

  51. Shinohara S, Seki T, Sakai T, Yoshida R, Takeoka Y. Photoregulated wormlike motion of a gel. Angew Chem Int Ed. 2008;47:9039.

    Article  CAS  Google Scholar 

  52. Shinohara S, Seki T, Sakai T, Yoshida R, Takeoka Y. Chemical and optical control of peristaltic actuator based on self-oscillating porous gel. Chem Commun. 2008;39:4735.

    Article  CAS  Google Scholar 

  53. Yamamoto T, Yoshida R. Self-oscillation of polymer and photo-regulation by introducing photochromic site to induce LCST changes. React Funct Polym. 2013;73:945.

    Article  CAS  Google Scholar 

  54. Hidaka M, Yoshida R. Self-oscillating gel composed of thermosensitive polymer exhibiting higher LCST. J Control Release. 2011;150:171.

    Article  CAS  PubMed  Google Scholar 

  55. Masuda T, Shimada N, Sasaki T, Maruyama A, Akimoto AM, Yoshida R. Design of a tunable self-oscillating polymer with ureido and Ru(bpy)3 moieties. Angew Chem Int Ed. 2017;56:9459.

    Article  CAS  Google Scholar 

  56. Masuda T, Terasaki A, Akimoto AM, Nagase K, Okano T, Yoshida R. Control of swelling-deswelling behavior of a self-oscillating gel by designing the chemical structure. RSC Adv. 2015;5:5781.

    Article  CAS  Google Scholar 

  57. Hara Y, Yoshida R. Self-oscillation of polymer chains induced by the Belousov–Zhabotinsky reaction under acid-free conditions. J Phys Chem B. 2005;109:9451.

    Article  CAS  PubMed  Google Scholar 

  58. Hara Y, Yoshida R. Control of oscillating behavior for the self-oscillating polymer with pH-control site. Langmuir 2005;21:9773.

    Article  CAS  PubMed  Google Scholar 

  59. Hara Y, Sakai T, Maeda S, Hashimoto S, Yoshida R. Self-oscillating soluble-insoluble changes of polymer chain including an oxidizing agent induced by the Belousov-Zhabotinsky reaction. J Phys Chem B. 2005;109:23316.

    Article  CAS  PubMed  Google Scholar 

  60. Hara Y, Yoshida R. Self-oscillating polymer fueled by organic acid. J Phys Chem B. 2008;112:8427.

    Article  CAS  PubMed  Google Scholar 

  61. Ueki T, Watanabe M, Yoshida R. Belousov–Zhabotinsky reaction in protic ionic liquids. Angew Chem Int Ed. 2012;51:11991.

    Article  CAS  Google Scholar 

  62. Ueki T, Matsukawa K, Masuda T, Yoshida R. Protic ionic liquids for the Belousov–Zhabotinsky reaction: aspects of the BZ reaction in protic ionic liquids and its use for the autonomous coil-globule oscillation of a linear polymer. J Phys Chem B. 2017;121:4592.

    Article  CAS  PubMed  Google Scholar 

  63. Masuda T, Ueki T, Tamate R, Matsukawa K, Yoshida R. Chemomechanical motion of self‐oscillating gel in a protic ionic liquid. Angew Chem Int Ed. 2018;57:16693.

    Article  CAS  Google Scholar 

  64. Murase Y, Maeda S, Hashimoto S, Yoshida R. Design of a mass transport surface utilizing peristaltic motion of a self-oscillating gel. Langmuir 2009;25:483.

    Article  CAS  PubMed  Google Scholar 

  65. Mitsunaga R, Okeyoshi K, Yoshida R. Design of comb-type self-oscillating gel. Chem Commun. 2013;49:4935.

    Article  CAS  Google Scholar 

  66. Lee WS, Enomoto T, Akimoto AM, Yoshida R. Fabrication of comb-type self-oscillating gels by atom transfer radical polymerization for control of autonomous swelling/deswelling behavior. NPG Asia Mater. 2022;14:12.

    Article  CAS  Google Scholar 

  67. Maeda S, Hara Y, Sakai T, Yoshida R, Hashimoto S. Self-walking gel. Adv Mater. 2007;19:3480.

    Article  CAS  Google Scholar 

  68. Tabata O, Kojima H, Kasatani T, Isono Y, Yoshida R. Chemo-mechanical actuator using self-oscillating gel for artificial cilia. Proc Int Conf MEMS. 2003;2003:12–5.

    Google Scholar 

  69. Tabata O, Hirasawa H, Aoki S, Yoshida R, Kokufuta E. Ciliary motion actuator using self-oscillating gel. Sens Actuators A. 2002;95:234.

    Article  CAS  Google Scholar 

  70. Kuksenok O, Yashin VV, Kinoshita M, Sakai T, Yoshida R, Balazs AC. Exploiting gradients in cross-link density to control the bending and self-propelled motion of active gels. J Mater Chem. 2011;21:8360.

    Article  CAS  Google Scholar 

  71. Yashin VV, Suzuki S, Yoshida R, Balazs AC. Controlling the dynamics behavior of heterogeneous self-oscillating gels. J Mater Chem. 2012;22:13625.

    Article  CAS  Google Scholar 

  72. Nakata S, Yoshii M, Suzuki S, Yoshida R. Periodic reciprocating motion of a polymer gel on an aqueous phase synchronized with the Belousov-Zhabotinsky reaction. Langmuir 2014;30:517.

    Article  CAS  PubMed  Google Scholar 

  73. Murase Y, Hidaka M, Yoshida R. Self-driven gel conveyer: autonomous transportation by peristaltic motion of self-oscillating gel. Sens Actuators B 2010;149:272.

    Article  CAS  Google Scholar 

  74. Murase Y, Takeshima R, Yoshida R. Self-driven gel conveyer: effect of interactions between loaded cargo and self-oscillating gel surface. Macromol Biosci. 2011;11:1713.

    Article  CAS  PubMed  Google Scholar 

  75. Yoshida R, Murase Y. Self-oscillating surface of gel for autonomous mass transport. Colloids Surf B 2012;99:60.

    Article  CAS  Google Scholar 

  76. Shiraki Y, Yoshida R. Autonomous intestine-like motion of tubular self-oscillating gel. Angew Chem Int Ed. 2012;51:6112.

    Article  CAS  Google Scholar 

  77. Shiraki Y, Akimoto AM, Miyata T, Yoshida R. Autonomous pulsatile flow by peristaltic motion of tubular self-oscillating gels. Chem Mater. 2014;26:5441.

    Article  CAS  Google Scholar 

  78. Masuda T, Hidaka M, Murase Y, Akimoto AM, Nagase K, Okano T, et al. Self-oscillating polymer brushes. Angew Chem Int Ed. 2013;52:7468.

    Article  CAS  Google Scholar 

  79. Masuda T, Akimoto AM, Nagase K, Okano T, Yoshida R. Design of self-oscillating polymer brushes and control of the dynamic behaviors. Chem Mater. 2015;27:7395.

    Article  CAS  Google Scholar 

  80. Masuda T, Akimoto AM, Furusawa M, Tamate R, Nagase K, Okano T, et al. Aspects of the Belousov–Zhabotinsky reaction inside a self-oscillating polymer brush. Langmuir 2018;34:1673.

    Article  CAS  PubMed  Google Scholar 

  81. Homma K, Masuda T, Akimoto AM, Nagase K, Okano T, Yoshida R. Stable and prolonged autonomous oscillation in a self-oscillating polymer brush prepared on a porous glass substrate. Langmuir 2019;35:9794.

    Article  CAS  PubMed  Google Scholar 

  82. Homma K, Ohta Y, Minami K, Yoshikawa G, Nagase K, Akimoto AM, et al. Autonomous nanoscale chemomechanical oscillation on the self-oscillating polymer brush surface by precise control of graft density. Langmuir 2021;37:4380.

    Article  CAS  PubMed  Google Scholar 

  83. Ito Y, Hara Y, Uetsuka H, Hasuda H, Onishi H, Arakawa H, et al. AFM observation of immobilized self-oscillating polymer. J Phys Chem B. 2006;110:5170.

    Article  CAS  PubMed  Google Scholar 

  84. Masuda T, Akimoto AM, Nagase K, Okano T, Yoshida R. Artificial cilia as autonomous nanoactuators: design of a gradient self-oscillating polymer brush with controlled unidirectional motion. Sci Adv. 2016;2:e1600902.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Homma K, Masuda T, Akimoto AM, Nagase K, Itoga K, Okano T, et al. Fabrication of micropatterned self-oscillating polymer brush for direction control of chemical waves. Small 2017;13:1700041.

    Article  CAS  Google Scholar 

  86. Tateyama S, Shibuta Y, Yoshida R. Direction control of chemical wave propagation in self-oscillating gel array. J Phys Chem B. 2008;112:1777.

    Article  CAS  PubMed  Google Scholar 

  87. Yoshida R, Sakai T, Ito S, Yamaguchi T. Self-oscillation of polymer chains with rhythmical soluble-insoluble changes. J Am Chem Soc. 2002;124:8095.

    Article  CAS  PubMed  Google Scholar 

  88. Hara Y, Yoshida R. A viscosity self-oscillation of polymer solution induced by the BZ reaction under acid-free condition. J Chem Phys. 2008;128:224904.

    Article  PubMed  CAS  Google Scholar 

  89. Ueno T, Bundo K, Akagi Y, Sakai T, Yoshida R. Autonomous viscosity oscillation by reversible complex formation of terpyridine-terminated poly(ethylene glycol) in the BZ reaction. Soft Matter. 2010;6:6072.

    Article  CAS  Google Scholar 

  90. Ueki T, Yoshida R. Recent aspects of self-oscillating polymeric materials: designing self-oscillating polymers coupled with supramolecular chemistry and ionic liquid science. Phys Chem Chem Phys. 2014;16:10388.

    Article  CAS  PubMed  Google Scholar 

  91. Ueki T, Takasaki Y, Bundo K, Ueno T, Sakai T, Akagi Y, et al. Autonomous viscosity oscillation via metallo-supramolecular terpyridine chemistry of branched poly(ethylene glycol) driven by the Belousov–Zhabotinsky reaction. Soft Matter. 2014;10:1349.

    Article  CAS  PubMed  Google Scholar 

  92. Suzuki D, Sakai T, Yoshida R. Self-flocculating/self-dispersing oscillation of microgels. Angew Chem Int Ed. 2008;47:917.

    Article  CAS  Google Scholar 

  93. Suzuki D, Yoshida R. Temporal control of self-oscillation for microgels by cross-linking network structure. Macromolecules 2008;41:5830.

    Article  CAS  Google Scholar 

  94. Suzuki D, Yoshida R. Effect of initial substrate concentration of the Belousov–Zhabotinsky reaction on self-oscillation for microgel system. J Phys Chem B. 2008;112:12618.

    Article  CAS  PubMed  Google Scholar 

  95. Suzuki D, Yoshida R. Self-oscillating core/shell microgels. Polym J. 2010;42:501.

    Article  CAS  Google Scholar 

  96. Suzuki D, Taniguchi H, Yoshida R. Autonomously oscillating viscosity in microgel dispersions. J Am Chem Soc. 2009;131:12058.

    Article  CAS  PubMed  Google Scholar 

  97. Taniguchi H, Suzuki D, Yoshida R. Characterization of autonomously oscillating viscosity induced by swelling/deswelling oscillation of the microgels. J Phys Chem B. 2010;114:2405.

    Article  CAS  PubMed  Google Scholar 

  98. Matsui S, Kureha T, Nagase Y, Okeyoshi K, Yoshida R, Sato T, et al. Small-angle X-ray scattering study on internal microscopic structures of poly(N-isopropylacrylamide-co-tris(2,2′-bipyridyl))ruthenium(II) complex microgels. Langmuir 2015;31:7228.

    Article  CAS  PubMed  Google Scholar 

  99. Matsui S, Inui K, Kumai Y, Yoshida R, Suzuki D. Autonomously oscillating hydrogel microspheres with high-frequency swelling/deswelling and dispersing/flocculating oscillations. ACS Biomater Sci Eng. 2019;5:5615.

    Article  CAS  PubMed  Google Scholar 

  100. Inui K, Saito I, Yoshida R, Minato H, Suzuki D. High-frequency swelling/deswelling oscillation of poly(oligoethylene glycol) methacrylate-based hydrogel microspheres with a tris(2,2′-bipyridyl)ruthenium catalyst. ACS Appl Polym Mater. 2021;3:3298.

    Article  CAS  Google Scholar 

  101. Suzuki D, Kobayashi T, Yoshida R, Hirai T. Soft actuators of organized self-oscillating microgels. Soft Matter. 2012;8:11447.

    Article  CAS  Google Scholar 

  102. Ueki T, Shibayama M, Yoshida R. Self-oscillating micelles. Chem Commun. 2013;49:6947.

    Article  CAS  Google Scholar 

  103. Ueki T, Onoda M, Tamate R, Shibayama M, Yoshida R. Self-oscillating AB diblock copolymer developed by post modification strategy. Chaos 2015;25:064605.

    Article  PubMed  CAS  Google Scholar 

  104. Yoshizawa T, Onoda M, Ueki T, Tamate R, Akimoto AM, Yoshida R. Fabrication of self-oscillating micelles with a built-in oxidizing agent. Angew Chem Int Ed. 2020;59:3871.

    Article  CAS  Google Scholar 

  105. Tamate R, Ueki T, Shibayama M, Yoshida R. Self-oscillating vesicles: Spontaneous cyclic structural changes of synthetic diblock copolymers. Angew Chem Int Ed. 2014;53:11248.

    Article  CAS  Google Scholar 

  106. Tamate R, Ueki T, Shibayama M, Yoshida R. Autonomous unimer-vesicle oscillation by totally synthetic diblock copolymers: effect of block length and polymer concentration on spatio-temporal structures. Soft Matter. 2017;13:4559.

    Article  CAS  PubMed  Google Scholar 

  107. Tamate R, Ueki T, Shibayama M, Yoshida R. Effect of substrate concentrations on the aggregation behavior and dynamic oscillatory properties of self-oscillating block copolymers. Phys Chem Chem Phys. 2017;19:20627.

    Article  CAS  PubMed  Google Scholar 

  108. Tamate R, Ueki T, Yoshida R. Self-beating artificial cells: design of cross-linked polymersomes showing self-oscillating motion. Adv Mater. 2015;27:837.

    Article  CAS  PubMed  Google Scholar 

  109. Tamate R, Ueki T, Yoshida R. Evolved colloidosomes undergoing cell-like autonomous shape oscillations with buckling. Angew Chem Int Ed. 2016;55:5179.

    Article  CAS  Google Scholar 

  110. Onoda M, Ueki T, Shibayama M, Yoshida R. Multiblock copolymers exhibiting spatio-temporal structure with autonomous viscisity oscillation. Sci Rep. 2015;5:15792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Onoda M, Ueki T, Tamate R, Shibayama M, Yoshida R. Amoeba-like self-oscillating polymeric fluids with autonomous sol-gel transition. Nat Commun. 2017;8:15862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Lee E, Kim YS, Akimoto AM, Yoshida R. Reversible and directional control of chemical wave propagation in a hydrogel by magnetic migration through liquid interfaces. Chem Mater. 2018;30:5841.

    Article  CAS  Google Scholar 

  113. Yashin VV, Balazs AC. Pattern formation and shape changes in self-oscillating polymer gels. Science 2006;314:798.

    Article  CAS  PubMed  Google Scholar 

  114. Yashin VV, Kuksenok O, Balazs AC. Modeling autonomously oscillating chemo-responsive gels. Prog Polym Sci. 2010;35:155.

    Article  CAS  Google Scholar 

  115. Yashin VV, Kuksenok O, Dayal P, Balazs AC. Mechano-chemical oscillations and waves in reactive gels. Rep. Prog Phys. 2012;75:066601.

    Article  PubMed  CAS  Google Scholar 

  116. Kuksenok O, Balazs AC. Modeling the photoinduced reconfiguration and directed motion of polymer gels. Adv Funct Mater. 2013;23:4601.

    Article  CAS  Google Scholar 

  117. Li J, Li X, Zheng Z, Ding X. A dynamic self-regulation actuator combined double network gel with gradient structure driven by chemical oscillating reaction. RSC Adv. 2019;9:13168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Levin I, Deegan R, Sharon E. Self-oscillating membranes: chemomechanical sheets show autonomous periodic shape transformation. Phys Rev Lett. 2020;125:178001.

    Article  CAS  PubMed  Google Scholar 

  119. Shao Q, Zhang S, Hu Z, Zhou Y. Multimode self-oscillating vesicle transformers. Angew Chem Int Ed. 2020;59:17125.

    Article  CAS  Google Scholar 

  120. Aishan Y, Yalikun Y, Shen Y, Yuan Y, Amaya S, Okutaki T, et al. A chemical micropump actuated byself-oscillating polymer gel. Sens Actuators B 2021;337:129769.

    Article  CAS  Google Scholar 

  121. Osypova A, Dubner M, Panzarasa G. Oscillating reactions meet polymers at interfaces. Materials 2020;13:2957.

    Article  CAS  PubMed Central  Google Scholar 

  122. Mallphanov IL, Vanag VK. Chemical micro-oscillators based on the Belousov–Zhabotinsky reaction. Russ Chem Rev. 2021;90:1263.

    Article  Google Scholar 

  123. Yoshida R, Ichijo H, Hakuta T, Yamaguchi T. Self-oscillating swelling and deswelling of polymer gels. Macromol Rapid Commun. 1995;16:305.

    Article  CAS  Google Scholar 

  124. Yoshida R, Ichijo H, Yamaguchi T. Novel oscillating swelling-deswelling dynamic bahaviour for pH-sensitive polymer gels. Mater Sci Eng C. 1996;4:107.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research (No. 20H00388, 15H02198, 22245037, 15205027 to R.Y.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The author thanks all group members with great sincerity and deeply appreciates the great contributions of coworkers and collaborators, especially TO (Tokyo Women’s Medical Univ.), MS (The Univ. of Tokyo), ACB (Univ. Pittsburgh, USA), TS (The Univ. of Tokyo), AM A (The Univ. of Tokyo), DS (Shinshu Univ., Japan), TU (NIMS), KO (JAIST), YK (POSTECH, Korea), TU (Nagoya Univ.), TM (The Univ. of Tokyo), RT (NIMS), MO (Nagoya Univ., MIT), KH (NIMS), TE (The Univ. of Tokyo), YH (AIST), KM (Toray, Co. Ltd.), YM (DNP, Co., Ltd.), YM (JPK. Inst., AG Japan), EJL (Samsung Electronic-Mechanics, Korea), YS (Goyo Paper Working, Co., Ltd.), KN (Keio Univ.), TM (Kansai Univ.), YT (Nagoya Univ.), SM (Shibaura Ins. Tech.), OT (Kyoto Univ.), and YH (Univ. Reading, UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Yoshida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, R. Creation of softmaterials based on self-oscillating polymer gels. Polym J 54, 827–849 (2022). https://doi.org/10.1038/s41428-022-00638-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00638-8

This article is cited by

Search

Quick links