Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Glucan phosphorylase-catalyzed enzymatic synthesis of unnatural oligosaccharides and polysaccharides using nonnative substrates

Abstract

Oligosaccharides and polysaccharides are comprised of complicated chemical structures owing to the structural variation of monosaccharide repeating units and the differences in the regio- and stereo-arrangements of the glycosidic linkages in their saccharide chains. Glucan phosphorylase (GP, EC 2.4.1.1) catalyzes consecutive enzymatic glycosylation in a manner similar to enzymatic polymerization employing α-d-glucose 1-phosphate (Glc-1-P) and maltooligosaccharide as a glycosyl donor and acceptor (or monomer and primer), respectively, to produce a well-defined α(1→4)-glucan polymer, that is, amylose, while liberating inorganic phosphate (Pi). After understanding the principal reaction mechanism and specificity of GP catalysis, the present review focuses on the enzymatic synthesis of unnatural oligosaccharides and polysaccharides linked through strictly controlled α(1→4)-glycosidic linkages by GP catalysis. Due to the weak specificity of the recognition of substrates by GP, unnatural oligosaccharides having different monosaccharide units at the nonreducing end have been precisely obtained by GP-catalyzed glycosylation using analog substrates of Glc-1-P, i.e., nonnative monosaccharide 1-phosphates. Highly branched α(1→4)-glucans have been employed as polymeric glycosyl acceptors and primers for GP-catalyzed enzymatic glycosylation and polymerization to obtain unnatural amphoteric and hydrogel materials. Thermostable GP catalyzes consecutive enzymatic glycosylation using α-d-glucosamine and α-d-mannose 1-phosphates as glycosyl donors. By removing Pi, consecutive reactions were accelerated, and enzymatic polymerization occurred, resulting in the synthesis of several unnatural α(1→4)-linked polysaccharides with well-defined structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Schuerch C Polysaccharides. In: Mark HF, Bilkales N, Overberger CG (eds) Encyclopedia of polymer science and engineering, 13. 2nd edn. John Wiley & Sons, New York, 1986; pp 87-162.

  2. Berg JM, Tymoczko JL, Stryer L Biochemistry. 7th edn. WH Freeman, New York. 2012.

  3. Yalpani M Polysaccharides: Syntheses, modifications, and structure/property relations. Studies in organic chemistry, 36. Elsevier, Amsterdam; New York. 1988.

  4. Das R, Mukhopadhyay B. Chemical O-glycosylations: an overview. ChemistryOpen. 2016;5:401–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Williams R, Galan MC. Recent advances in organocatalytic glycosylations. Eur J Org Chem. 2017;2017:6247–64.

    CAS  Google Scholar 

  6. Nielsen MM, Pedersen CM. Catalytic glycosylations in oligosaccharide synthesis. Chem Rev. 2018;118:8285–358.

    CAS  PubMed  Google Scholar 

  7. Kobayashi S, Makino A. Enzymatic polymer synthesis: An opportunity for green polymer chemistry. Chem Rev. 2009;109:5288–353.

    CAS  PubMed  Google Scholar 

  8. Kadokawa J. Precision polysaccharide synthesis catalyzed by enzymes. Chem Rev. 2011;111:4308–45.

    CAS  PubMed  Google Scholar 

  9. Shoda S, Uyama H, Kadokawa J, Kimura S, Kobayashi S. Enzymes as green catalysts for precision macromolecular synthesis. Chem Rev. 2016;116:2307–413.

    CAS  PubMed  Google Scholar 

  10. Shoda S. Development of chemical and chemo-enzymatic glycosylations. Proc Jpn Acad Ser B. 2017;93:125–45.

    CAS  Google Scholar 

  11. Shoda S, Noguchi M, Li G, Kimura S Synthesis of polysaccharides I: Hydrolase as catalyst. In: Kohayasni S, Uyama H, Kadokawa J (eds) Enzymatic Polymerization towards Green Polymer Chemistry, https://doi.org/10.1007/978-981-13-3813-7_2. Springer, Heidelberg, 2019; 15-46.

  12. Loos K, Kadokawa J Synthesis of polysaccharides II: Phosphorylase as catalyst. In: Kobayashi S, Uyama H, Kadokawa J (eds) Enzymatic Polymerization towards Green Polymer Chemistry, https://doi.org/10.1007/978-981-13-3813-7_3. Springer, Heidelberg, 2019; 47-87.

  13. Kimura S, Iwata T Synthesis of polysaccharides III: Sucrase as catalyst. In: Kobayashi S, Uyama H, Kadokawa J (eds) Enzymatic Polymerization towards Green Polymer Chemistry, https://doi.org/10.1007/978-981-13-3813-7_4. Springer, Heidelberg, 2019; 89-104.

  14. Renkonen O. Enzymatic glycosylations with glycosyltransferases. Carbohydr Chem Biol. 2008;2-4:647–61.

    Google Scholar 

  15. Shoda S, Izumi R, Fujita M. Green process in glycotechnology. Bull Chem Soc Jpn. 2003;76:1–13.

    CAS  Google Scholar 

  16. Kobayashi S, Kashiwa K, Kawasaki T, Shoda S. Novel method for polysaccharide synthesis using an enzyme—The 1st in vitro synthesis of cellulose via a nonbiosyntehtic path utilizing cellulase as catalyst. J Am Chem Soc. 1991;113:3079–84.

    CAS  Google Scholar 

  17. Okamoto E, Kiyosada T, Shoda S, Kobayashi S. Synthesis of alternatingly 6-O-methylated cellulose via enzymatic polymerization of a substituted cellobiosyl fluoride monomer catalyzed by cellulase. Cellulose 1997;4:161–72.

    CAS  Google Scholar 

  18. Izumi R, Suzuki Y, Shimizu Y, Fujita M, Ishihara M, Noguchi M, et al. Synthesis of artificial oligosaccharides by polycondensation of 2’-O-methyl cellobiosyl fluoride and mannosyl-glucosyl fluoride catalyzed by cellulase. In: Kadokawa J (ed) Interfacial researches in fundamental and material sciences of oligo- and polysaccharides. Transworld Research Network, Trivandrum, India, 2009; 45-67.

  19. Kitaoka M, Hayashi K. Carbohydrate-processing phosphorolytic enzymes. Trends Glycosci Glycotechnol. 2002;14:35–50.

    CAS  Google Scholar 

  20. Puchart V. Glycoside phosphorylases: Structure, catalytic properties and biotechnological potential. Biotechnol Adv. 2015;33:261–76.

    CAS  PubMed  Google Scholar 

  21. Nakai H, Kitaoka M, Svensson B, Ohtsubo K. Recent development of phosphorylases possessing large potential for oligosaccharide synthesis. Curr Opin Chem Biol. 2013;17:301–9.

    CAS  PubMed  Google Scholar 

  22. O’Neill EC, Field RA. Enzymatic synthesis using glycoside phosphorylases. Carbohydr Res. 2015;403:23–37.

    PubMed  PubMed Central  Google Scholar 

  23. Seibel J, Beine R, Moraru R, Behringer C, Buchholz K. A new pathway for the synthesis of oligosaccharides by the use of non-Leloir glycosyltransferases. Biocatalysis Biotransformation. 2006;24:157–65.

    CAS  Google Scholar 

  24. Seibel J, Jordening HJ, Buchholz K. Glycosylation with activated sugars using glycosyltransferases and transglycosidases. Biocatalysis Biotransformation. 2006;24:311–42.

    CAS  Google Scholar 

  25. Kadokawa J. Precision synthesis of functional polysaccharide materials by phosphorylase-catalyzed enzymatic reactions. Polymers. 2016;8:138 https://doi.org/10.3390/polym8040138

    Article  CAS  PubMed Central  Google Scholar 

  26. Kadokawa J. α-Glucan phosphorylase: A useful catalyst for precision enzymatic synthesis of oligo- and polysaccharides. Curr Org Chem. 2017;21:1192–204.

    CAS  Google Scholar 

  27. Kadoakwa J Enzymatic synthesis of non-natural oligo- and polysaccharides by phosphorylase-catalyzed glycosylations using analogue substrates. In: Cheng HN, Gross RA, Smith PB (eds) Green polymer chemistry: Biobased materials and biocatalysis. vol 1192. ACS Symposium Series 1192; American Chemical Society, Washington, DC, 2015; 87-99.

  28. Kadokawa J. Synthesis of non-natural oligosaccharides by α-glucan phosphorylase-catalyzed enzymatic glycosylations using analogue substrates of α-D-glucose 1-phosphate. Trends Glycosci Glycotechnol 2013;25:57–69.

    CAS  Google Scholar 

  29. Kadokawa J α-Glucan phosphorylase-catalyzed enzymatic reactions using analog substrates to synthesize non-natural oligo-and polysaccharides. Catalysts. 2018; 8: https://doi.org/10.3390/catal8100473.

  30. Kadokawa J α-glucan phosphorylase-catalyzed enzymatic reactions to precisely synthesize non-natural polysaccharides. In: Sustainability & green polymer chemistry Volume 2: Biocatalysis and biobased polymers, vol 1373. ACS Symposium Series, vol 1373. American Chemical Society, 2020; 31-46.

  31. Palm D, Klein HW, Schinzel R, Buehner M, Helmreich EJM. The role of pyridoxal 5’-phosphate in glycogen phosphorylase catalysis. Biochemistry 1990;29:1099–107.

    CAS  PubMed  Google Scholar 

  32. Browner MF, Fletterick RJ. Phosphorylase: a biological transducer. Trends Biochemical Sci. 1992;17:66–71.

    CAS  Google Scholar 

  33. Johnson LN. Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB J. 1992;6:2274–82.

    CAS  PubMed  Google Scholar 

  34. Schinzel R, Nidetzky B. Bacterial α-glucan phosphorylases. FEMS Microbiol Lett. 1999;171:73–9.

    CAS  PubMed  Google Scholar 

  35. Ubiparip Z, Beerens K, Franceus J, Vercauteren R, Desmet T. Thermostable α-glucan phosphorylases: characteristics and industrial applications. Appl Microbiol Biotechnol. 2018;102:8187–202.

    CAS  PubMed  Google Scholar 

  36. Boeck B, Schinzel R. Purification and characterisation of an α-glucan phosphorylase from the thermophilic bacterium Thermus thermophilus. Eur J Biochem. 1996;239:150–5.

    CAS  PubMed  Google Scholar 

  37. Takaha T, Yanase M, Takata H, Okada S. Structure and properties of Thermus aquaticus α-glucan phosphorylase expressed in Escherichichia coli. J Appl Glycosci. 2001;48:71–8.

    CAS  Google Scholar 

  38. Yanase M, Takata H, Fujii K, Takaha T, Kuriki T. Cumulative effect of amino acid replacements results in enhanced thermostability of potato type L α-glucan phosphorylase. Appl Environ Microbiol. 2005;71:5433–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ziegast G, Pfannemüller B. Linear and star-shaped hybrid polymers. Phosphorolytic syntheses with di-functional, oligo-functional and multifunctional primers. Carbohydr Res. 1987;160:185–204.

    CAS  Google Scholar 

  40. Fujii K, Takata H, Yanase M, Terada Y, Ohdan K, Takaha T, et al. Bioengineering and application of novel glucose polymers. Biocatalysis Biotransformation. 2003;21:167–72.

    CAS  Google Scholar 

  41. Yanase M, Takaha T, Kuriki T. α-Glucan phosphorylase and its use in carbohydrate engineering. J Sci Food Agriculture. 2006;86:1631–5.

    CAS  Google Scholar 

  42. Ohdan K, Fujii K, Yanase M, Takaha T, Kuriki T. Enzymatic synthesis of amylose. Biocatalysis Biotransformation. 2006;24:77–81.

    CAS  Google Scholar 

  43. Kitamura S Starch polymers, natural and synthetic. In: Salamone C (ed) The Polymeric materials encyclopedia, Synthesis, properties and applications, vol 10. CRC Press, New York, 1996; 7915-22.

  44. Imberty A, Chanzy H, Perez S, Buleon A, Tran V. The double-helical nature of the crystalline part of A-starch. J Mol Biol. 1988;201:365–78.

    CAS  PubMed  Google Scholar 

  45. Imberty A, Perez S. A revisit to the three-dimensional structure of B-type starch. Biopolymers 1988;27:1205–21.

    CAS  Google Scholar 

  46. Kadokawa J Synthesis of amylose-grafted polysaccharide materials by phosphorylase-catalyzed enzymatic polymerization. In: Smith PB, Gross RA (eds) Biobased monomers, polymers, and materials. vol 1043. ACS Symposium Series 1105; American Chemical Society, Washington, DC, 2012; 237-55.

  47. Kadokawa J Synthesis of new polysaccharide materials by phosphorylase-catalyzed enzymatic α-glycosylations using polymeric glycosyl acceptors. In: Cheng HN, Gross RA, Smith PB (eds) Green polymer chemistry: Biocatalysis and materials II. vol 1144. ACS Symposium Series 1144; American Chemical Society, Washington, DC, 2013; 141-61.

  48. Kadokawa J. Chemoenzymatic synthesis of functional amylosic materials. Pure Appl Chem. 2014;86:701–9.

    CAS  Google Scholar 

  49. Nishimura T, Akiyoshi K Amylose engineering: phosphorylase-catalyzed polymerization of functional saccharide primers for glycobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016 https://doi.org/10.1002/wnan.1423.

  50. Kadokawa J. Enzymatic preparation of functional polysaccharide hydrogels by phosphorylase catalysis. Pure Appl Chem. 2018;90:1045–54.

    CAS  Google Scholar 

  51. Izawa H, Nawaji M, Kaneko Y, Kadokawa J. Preparation of glycogen-based polysaccharide materials by phosphorylase-catalyzed chain elongation of glycogen. Macromol Biosci. 2009;9:1098–104.

    CAS  PubMed  Google Scholar 

  52. Evers B, Thiem J. Further syntheses employing phosphorylase. Bioorg Medicinal Chem. 1997;5:857–63.

    CAS  Google Scholar 

  53. Nawaji M, Izawa H, Kaneko Y, Kadokawa J. Enzymatic synthesis of α-D-xylosylated maltooligosaccharides by phosphorylase-catalyzed xylosylation. J Carbohydr Chem. 2008;27:214–22.

    CAS  Google Scholar 

  54. Nawaji M, Izawa H, Kaneko Y, Kadokawa J. Enzymatic α-glucosaminylation of maltooligosaccharides catalyzed by phosphorylase. Carbohydr Res. 2008;343:2692–6.

    CAS  PubMed  Google Scholar 

  55. Kawazoe S, Izawa H, Nawaji M, Kaneko Y, Kadokawa J. Phosphorylase-catalyzed N-formyl-α-glucosaminylation of maltooligosaccharides. Carbohydr Res. 2010;345:631–6.

    CAS  PubMed  Google Scholar 

  56. Umegatani Y, Izawa H, Nawaji M, Yamamoto K, Kubo A, Yanase M, et al. Enzymatic α-glucuronylation of maltooligosaccharides using α-glucuronic acid 1-phosphate as glycosyl donor catalyzed by a thermostable phosphorylase from Aquifex aeolicus VF5. Carbohydr Res. 2012;350:81–5.

    CAS  PubMed  Google Scholar 

  57. Kadokawa J, Chigita H, Yamamoto K Chemoenzymatic synthesis of carboxylate-terminated maltooligosaccharides and their use for cross-linking of chitin. International Journal of Biological Macromolecules. 2020 https://doi.org/10.1016/j.ijbiomac.2020.05.082.

  58. Kurita K. Chitin and chitosan: Functional biopolymers from marine crustaceans. Marine. Biotechnol. 2006;8:203–26.

    CAS  Google Scholar 

  59. Takata H, Takaha T, Okada S, Hizukuri S, Takagi M, Imanaka T. Structure of the cyclic glucan produced from amylopectin by Bacillus stearothermophilus branching enzyme. Carbohydr Res. 1996;295:91–101.

    CAS  PubMed  Google Scholar 

  60. Takata H, Takaha T, Nakamura H, Fujii K, Okada S, Takagi M, et al. Production and some properties of a dextrin with a narrow size distribution by the cyclization reaction of branching enzyme. J Fermentation Bioeng. 1997;84:119–23.

    CAS  Google Scholar 

  61. Takemoto Y, Izawa H, Umegatani Y, Yamamoto K, Kubo A, Yanase M, et al. Synthesis of highly branched anionic α-glucans by thermostable phosphorylase-catalyzed α-glucuronylation. Carbohydr Res. 2013;366:38–44.

    CAS  PubMed  Google Scholar 

  62. Takata Y, Shimohigoshi R, Yamamoto K, Kadokawa J. Enzymatic synthesis of dendritic amphoteric α-glucans by thermostable phosphorylase catalysis. Macromol Biosci. 2014;14:1437–43.

    CAS  PubMed  Google Scholar 

  63. Takata Y, Yamamoto K, Kadokawa J. Preparation of pH-responsive amphoteric glycogen hydrogels by α-glucan phosphorylase-catalyzed successive enzymatic reactions. Macromol Chem Phys. 2015;216:1415–20.

    CAS  Google Scholar 

  64. Klein HW, Palm D, Helmreich EJM. General acid-base catalysis of α-glucan phosphorylases: Stereospecific glucosyl transfer from D-glucal is a pyridoxal 5′-phosphate and orthophosphate (arsenate) dependent reaction. Biochemistry. 1982;21:6675–84.

    CAS  PubMed  Google Scholar 

  65. Evers B, Mischnick P, Thiem J. Synthesis of 2-deoxy-α-D-arabino-hexopyranosyl phosphate and 2-deoxy-maltooligosaccharides with phosphorylase. Carbohydr Res. 1994;262:335–41.

    CAS  PubMed  Google Scholar 

  66. Evers B, Thiem J. Synthesis of 2‐deoxy‐maltooligosaccharides with phosphorylase and their degradation with amylases. Starch ‐ Stärke. 1995;47:434–9.

    CAS  Google Scholar 

  67. Uto T, Nakamura S, Yamamoto K, Kadokawa J Evaluation of artificial crystalline structure from amylose analog polysaccharide without hydroxy groups at C-2 position. Carbohydrate Polymers. 2020;240:116347.

    CAS  PubMed  Google Scholar 

  68. Kadokawa J, Nakamura S, Yamamoto K Thermostable α-glucan phosphorylase-catalyzed enzymatic copolymerization to produce partially 2-deoxygenated amyloses. Processes. 2020; 8: https://doi.org/10.3390/pr8091070.

  69. Shimohigoshi R, Takemoto Y, Yamamoto K, Kadokawa J. Thermostable α-glucan phosphorylase-catalyzed successive α-mannosylations. Chem Lett. 2013;42:822–4.

    CAS  Google Scholar 

  70. Borgerding J. Phosphate deposits in digestion systems. J Water Pollut Control Fed. 1972;44:813–9.

    CAS  Google Scholar 

  71. Kadokawa J, Shimohigoshi R, Yamashita K, Yamamoto K. Synthesis of chitin and chitosan stereoisomers by thermostable α-glucan phosphorylase-catalyzed enzymatic polymerization of α-D-glucosamine 1-phosphate. Org Bimol Chem. 2015;13:4336–43.

    CAS  Google Scholar 

  72. Yui T, Uto T, Nakauchida T, Yamamoto K, Kadokawa JI. Double helix formation from non-natural amylose analog polysaccharides. Carbohydr Polym. 2018;189:184–9.

    CAS  PubMed  Google Scholar 

  73. Nakauchida T, Yamamoto K, Kadokawa J Hierarchically controlled assemblies from amylose analog aminopolysaccharides by reductive amination: from nano- to macrostructures. J Appl Polymer Sci. 2018; 135: https://doi.org/10.1002/app.45890.

  74. Yamashita K, Yamamoto K, Kadoakwa J. Synthesis of non-natural heteroaminopolysaccharides by α-glucan phosphorylase-catalyzed enzymatic copolymerization: α(1->4)-linked glucosaminoglucans. Biomacromolecules 2015;16:3989–94.

    CAS  PubMed  Google Scholar 

  75. Baba R, Yamamoto K, Kadokawa J. Synthesis of α(1->4)-linked non-natural mannoglucans by α-glucan phosphorylase-catalyzed enzymatic copolymerization. Carbohydr Polym. 2016;151:1034–9.

    CAS  PubMed  Google Scholar 

  76. Nakauchida T, Takata Y, Yamamoto K, Kadokawa J. Chemoenzymatic synthesis and pH-responsive properties of amphoteric block polysaccharides. Org Biomol Chem. 2016;14:6449–56.

    CAS  PubMed  Google Scholar 

  77. Kadokawa J, Lee LH, Yamamoto K. Thermostable α-glucan phosphorylase-catalyzed enzymatic chain-elongation to produce 6-deoxygenated α(1→4)-oligoglucans. Curr Org Chem. 2021;25:1345–52.

    CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully thanks Grants-in-Aid for Scientific Research from Ministry of Education, Culture, Sports, and Technology, Japan (Nos. 17K06001 and 21K05170) for financial support. The author also acknowledges the supply of thermostable glucan phosphorylase from Ezaki Glico Co. Ltd., Osaka, Japan. The author is indebted to the coworkers, whose names are found in references from his papers, for their enthusiastic collaborations. The author would also like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Kadokawa.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadokawa, Ji. Glucan phosphorylase-catalyzed enzymatic synthesis of unnatural oligosaccharides and polysaccharides using nonnative substrates. Polym J 54, 413–426 (2022). https://doi.org/10.1038/s41428-021-00584-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00584-x

This article is cited by

Search

Quick links