Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EZH2 promotes a bi-lineage identity in basal-like breast cancer cells

Abstract

The mechanisms regulating breast cancer differentiation state are poorly understood. Of particular interest are molecular regulators controlling the highly aggressive and poorly differentiated traits of basal-like breast carcinomas. Here we show that the Polycomb factor EZH2 maintains the differentiation state of basal-like breast cancer cells, and promotes the expression of progenitor-associated and basal-lineage genes. Specifically, EZH2 regulates the composition of basal-like breast cancer cell populations by promoting a ‘bi-lineage’ differentiation state, in which cells co-express basal- and luminal-lineage markers. We show that human basal-like breast cancers contain a subpopulation of bi-lineage cells, and that EZH2-deficient cells give rise to tumors with a decreased proportion of such cells. Bi-lineage cells express genes that are active in normal luminal progenitors, and possess increased colony-formation capacity, consistent with a primitive differentiation state. We found that GATA3, a driver of luminal differentiation, performs a function opposite to EZH2, acting to suppress bi-lineage identity and luminal-progenitor gene expression. GATA3 levels increase upon EZH2 silencing, mediating a decrease in bi-lineage cell numbers. Our findings reveal a novel role for EZH2 in controlling basal-like breast cancer differentiation state and intra-tumoral cell composition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Visvader JE . Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 2009; 23: 2563–2577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Prat A, Perou CM . Deconstructing the molecular portraits of breast cancer. Mol Oncol 2011; 5: 5–23.

    Article  CAS  PubMed  Google Scholar 

  3. Rakha EA, El-Sayed ME, Reis-Filho J, Ellis IO . Patho-biological aspects of basal-like breast cancer. Breast Cancer Res Treat 2008; 113: 411–422.

    Article  PubMed  Google Scholar 

  4. Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 2006; 19: 264–271.

    Article  CAS  PubMed  Google Scholar 

  5. Gusterson B . Do 'basal-like' breast cancers really exist? Nat Rev Cancer 2009; 9: 128–134.

    Article  CAS  PubMed  Google Scholar 

  6. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008; 40: 499–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009; 15: 907–913.

    Article  CAS  PubMed  Google Scholar 

  8. Molyneux G, Geyer FC, Magnay FA, McCarthy A, Kendrick H, Natrajan R et al. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 2010; 7: 403–417.

    Article  CAS  PubMed  Google Scholar 

  9. Keller PJ, Arendt LM, Skibinski A, Logvinenko T, Klebba I, Dong S et al. Defining the cellular precursors to human breast cancer. Proc Natl Acad Sci USA 2011; 109: 2772–2777.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sparmann A, van Lohuizen M . Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 2006; 6: 846–856.

    Article  CAS  PubMed  Google Scholar 

  11. Sauvageau M, Sauvageau G . Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 2010; 7: 299–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al. The Polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624–629.

    Article  CAS  PubMed  Google Scholar 

  13. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 2003; 100: 11606–11611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hock H . A complex Polycomb issue: the two faces of EZH2 in cancer. Genes Dev 2012; 26: 751–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pietersen AM, Horlings HM, Hauptmann M, Langerod A, Ajouaou A, Cornelissen-Steijger P et al. EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer. Breast Cancer Res 2008; 10: R109.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Alford SH, Toy K, Merajver SD, Kleer CG . Increased risk for distant metastasis in patients with familial early-stage breast cancer and high EZH2 expression. Breast Cancer Res Treat 2012; 132: 429–37.

    Article  CAS  PubMed  Google Scholar 

  17. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K . EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 2003; 22: 5323–5335.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gonzalez ME, Li X, Toy K, DuPrie M, Ventura AC, Banerjee M et al. Downregulation of EZH2 decreases growth of estrogen receptor-negative invasive breast carcinoma and requires BRCA1. Oncogene 2009; 28: 843–853.

    Article  PubMed  Google Scholar 

  19. Richter GH, Plehm S, Fasan A, Rossler S, Unland R, Bennani-Baiti IM et al. EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation. Proc Natl Acad Sci USA 2009; 106: 5324–5329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu J, Cao Q, Mehra R, Laxman B, Tomlins SA, Creighton CJ et al. Integrative genomics analysis reveals silencing of beta-adrenergic signaling by Polycomb in prostate cancer. Cancer Cell 2007; 12: 419–431.

    Article  CAS  PubMed  Google Scholar 

  21. Suva ML, Riggi N, Janiszewska M, Radovanovic I, Provero P, Stehle JC et al. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res 2009; 69: 9211–9218.

    Article  CAS  PubMed  Google Scholar 

  22. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006; 125: 301–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 2010; 12: R68.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17: 1253–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 2010; 140: 62–73.

    Article  CAS  PubMed  Google Scholar 

  26. Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 2007; 1: 84–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Debnath J, Brugge JS . Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 2005; 5: 675–688.

    Article  CAS  PubMed  Google Scholar 

  28. Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat ML, Oakes SR et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 2008; 3: 429–441.

    Article  CAS  PubMed  Google Scholar 

  29. Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F et al. Slug and sox9 cooperatively determine the mammary stem cell state. Cell 2012; 148: 1015–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 2011; 479: 189–193.

    Article  CAS  PubMed  Google Scholar 

  31. Spike BT, Engle DD, Lin JC, Cheung SK, La J, Wahl GM . A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer. Cell Stem Cell 2012; 10: 183–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang M, Behbod F, Atkinson RL, Landis MD, Kittrell F, Edwards D et al. Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res 2008; 68: 4674–4682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M et al. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell 2011; 8: 149–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z . GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 2006; 127: 1041–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 2007; 9: 201–209.

    Article  CAS  PubMed  Google Scholar 

  36. Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ et al. GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 2008; 13: 141–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Asselin-Labat ML, Sutherland KD, Vaillant F, Gyorki DE, Wu D, Holroyd S et al. Gata-3 negatively regulates the tumor-initiating capacity of mammary luminal progenitor cells and targets the putative tumor suppressor caspase-14. Mol Cell Biol 2011; 31: 4609–4622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Usary J, Llaca V, Karaca G, Presswala S, Karaca M, He X et al. Mutation of GATA3 in human breast tumors. Oncogene 2004; 23: 7669–7678.

    Article  CAS  PubMed  Google Scholar 

  39. Mehra R, Varambally S, Ding L, Shen R, Sabel MS, Ghosh D et al. Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res 2005; 65: 11259–11264.

    Article  CAS  PubMed  Google Scholar 

  40. Gusterson BA, Ross DT, Heath VJ, Stein T . Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res 2005; 7: 143–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chang CJ, Yang JY, Xia W, Chen CT, Xie X, Chao CH et al. EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell 2011; 19: 86–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Debnath J, Muthuswamy SK, Brugge JS . Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003; 30: 256–268.

    Article  CAS  PubMed  Google Scholar 

  43. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998; 72: 9873–9880.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Eli Pikarsky, Yuval Dor and Yehudit Bergman for critical reviewing of the manuscript, Marius Wernig for the Fip-EZH2 construct, Alex Roesch and Meenhard Herlyn for the pLU-JARID1Bp-GFP-BlastR construct and Sabine Werner for the CK14 promoter plasmid. We thank Norma E. Kidess–Bassir for histological support. This study was supported by the Israel Science Foundation (Grant 1560/07), the Israel Cancer Association, the Israel Cancer Research Foundation, and the Joint Research Fund IMRIC-Hadassah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Ben-Porath.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granit, R., Gabai, Y., Hadar, T. et al. EZH2 promotes a bi-lineage identity in basal-like breast cancer cells. Oncogene 32, 3886–3895 (2013). https://doi.org/10.1038/onc.2012.390

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.390

Keywords

This article is cited by

Search

Quick links