Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of cell migration by PITENINs: the role of ARF6

Abstract

We have reported previously the development of small-molecule phosphatidylinositol-3,4,5-trisphosphate (PIP3) antagonists (PITs) that block pleckstrin homology (PH) domain interaction, including activation of Akt, and show anti-tumor potential. Here we show that the same molecules inhibit growth factor-induced actin remodeling, lamellipodia formation and, ultimately, cell migration and invasion, consistent with an important role of PIP3 in these processes. In vivo, a PIT-1 analog displays significant inhibition on tumor angiogenesis and metastasis. ADP ribosylation factor 6 (ARF6) was recently identified as an important mediator of cytoskeleton and cell motility, which is regulated by PIP3-dependent membrane translocation of the guanine nucleotide exchange factors (GEFs), such as ADP-ribosylation factor nucleotide binding site opener (ARNO) and general receptor for 3-phosphoinositides (GRP1). We demonstrate that PITs inhibit PIP3/ARNO or GRP1 PH domain binding and membrane localization, resulting in the inhibition of ARF6 activation. Importantly, we show that expression of the constitutively active mutant of ARF6 attenuates inhibition of lamellipodia formation and cell migration by PITs, confirming that inhibition of ARF6 contributes to inhibition of these processes by PITs. Overall, our studies demonstrate the feasibility of developing specific small-molecule targeting PIP3 binding by PH domains as potential anticancer agents that can simultaneously interfere with cancer development at multiple points.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Avraamides CJ, Garmy-Susini B, Varner JA . (2008). Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 8: 604–617.

    Article  CAS  Google Scholar 

  • Balana ME, Niedergang F, Subtil A, Alcover A, Chavrier P, Dautry-Varsat A . (2005). ARF6 GTPase controls bacterial invasion by actin remodelling. J Cell Sci 118: 2201–2210.

    Article  CAS  Google Scholar 

  • Cantley LC . (2002). The phosphoinositide 3-kinase pathway. Science 296: 1655–1657.

    Article  CAS  Google Scholar 

  • Caumont AS, Vitale N, Gensse M, Galas MC, Casanova JE, Bader MF . (2000). Identification of a plasma membrane-associated guanine nucleotide exchange factor for ARF6 in chromaffin cells. Possible role in the regulated exocytotic pathway. J Biol Chem 275: 15637–15644.

    Article  CAS  Google Scholar 

  • Cavenagh MM, Whitney JA, Carroll K, Zhang C, Boman AL, Rosenwald AG et al. (1996). Intracellular distribution of Arf proteins in mammalian cells. Arf6 is uniquely localized to the plasma membrane. J Biol Chem 271: 21767–21774.

    Article  CAS  Google Scholar 

  • Chardin P, Paris S, Antonny B, Robineau S, Beraud-Dufour S, Jackson CL et al. (1996). A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature 384: 481–484.

    Article  CAS  Google Scholar 

  • Cox R, Mason-Gamer RJ, Jackson CL, Segev N . (2004). Phylogenetic analysis of Sec7-domain-containing Arf nucleotide exchangers. Mol Biol Cell 15: 1487–1505.

    Article  CAS  Google Scholar 

  • Donaldson JG . (2003). Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. J Biol Chem 278: 41573–41576.

    Article  CAS  Google Scholar 

  • Esteban PF, Yoon HY, Becker J, Dorsey SG, Caprari P, Palko ME et al. (2006). A kinase-deficient TrkC receptor isoform activates Arf6-Rac1 signaling through the scaffold protein tamalin. J Cell Biol 173: 291–299.

    Article  CAS  Google Scholar 

  • Frank S, Upender S, Hansen SH, Casanova JE . (1998a). ARNO is a guanine nucleotide exchange factor for ADP-ribosylation factor 6. J Biol Chem 273: 23–27.

    Article  CAS  Google Scholar 

  • Frank SR, Hatfield JC, Casanova JE . (1998b). Remodeling of the actin cytoskeleton is coordinately regulated by protein kinase C and the ADP-ribosylation factor nucleotide exchange factor ARNO. Mol Biol Cell 9: 3133–3146.

    Article  CAS  Google Scholar 

  • Gillingham AK, Munro S . (2007). The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol 23: 579–611.

    Article  CAS  Google Scholar 

  • Hafner M, Schmitz A, Grune I, Srivatsan SG, Paul B, Kolanus W et al. (2006). Inhibition of cytohesins by SecinH3 leads to hepatic insulin resistance. Nature 444: 941–944.

    Article  CAS  Google Scholar 

  • Hashimoto S, Onodera Y, Hashimoto A, Tanaka M, Hamaguchi M, Yamada A et al. (2004). Requirement for Arf6 in breast cancer invasive activities. Proc Natl Acad Sci USA 101: 6647–6652.

    Article  CAS  Google Scholar 

  • Hornstein I, Alcover A, Katzav S . (2004). Vav proteins, masters of the world of cytoskeleton organization. Cell Signal 16: 1–11.

    Article  CAS  Google Scholar 

  • Hu B, Shi B, Jarzynka MJ, Yiin JJ, D'Souza-Schorey C, Cheng SY . (2009). ADP-ribosylation factor 6 regulates glioma cell invasion through the IQ-domain GTPase-activating protein 1-Rac1-mediated pathway. Cancer Res 69: 794–801.

    Article  CAS  Google Scholar 

  • Jackson CL, Casanova JE . (2000). Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol 10: 60–67.

    Article  CAS  Google Scholar 

  • Kavran JM, Klein DE, Lee A, Falasca M, Isakoff SJ, Skolnik EY et al. (1998). Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J Biol Chem 273: 30497–30508.

    Article  CAS  Google Scholar 

  • Klarlund JK, Guilherme A, Holik JJ, Virbasius JV, Chawla A, Czech MP . (1997). Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science 275: 1927–1930.

    Article  CAS  Google Scholar 

  • Klarlund JK, Rameh LE, Cantley LC, Buxton JM, Holik JJ, Sakelis C et al. (1998). Regulation of GRP1-catalyzed ADP ribosylation factor guanine nucleotide exchange by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273: 1859–1862.

    Article  CAS  Google Scholar 

  • Langille SE, Patki V, Klarlund JK, Buxton JM, Holik JJ, Chawla A et al. (1999). ADP-ribosylation factor 6 as a target of guanine nucleotide exchange factor GRP1. J Biol Chem 274: 27099–27104.

    Article  CAS  Google Scholar 

  • Macia E, Luton F, Partisani M, Cherfils J, Chardin P, Franco M . (2004). The GDP-bound form of Arf6 is located at the plasma membrane. J Cell Sci 117: 2389–2398.

    Article  CAS  Google Scholar 

  • Macia E, Partisani M, Favard C, Mortier E, Zimmermann P, Carlier MF et al. (2008). The pleckstrin homology domain of the Arf6-specific exchange factor EFA6 localizes to the plasma membrane by interacting with phosphatidylinositol 4,5-bisphosphate and F-actin. J Biol Chem 283: 19836–19844.

    Article  CAS  Google Scholar 

  • Miao B, Skidan I, Yang J, Lugovskoy A, Reibarkh M, Long K et al. (2010). Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains. Proc Natl Acad Sci USA 107: 20126–20131.

    Article  CAS  Google Scholar 

  • Muralidharan-Chari V, Hoover H, Clancy J, Schweitzer J, Suckow MA, Schroeder V et al. (2009). ADP-ribosylation factor 6 regulates tumorigenic and invasive properties in vivo. Cancer Res 69: 2201–2209.

    Article  CAS  Google Scholar 

  • Nie Z, Hirsch DS, Randazzo PA . (2003). Arf and its many interactors. Curr Opin Cell Biol 15: 396–404.

    Article  CAS  Google Scholar 

  • Park WS, Heo WD, Whalen JH, O'Rourke NA, Bryan HM, Meyer T et al. (2008). Comprehensive identification of PIP3-regulated PH domains from C. elegans to H. sapiens by model prediction and live imaging. Mol Cell 30: 381–392.

    Article  CAS  Google Scholar 

  • Renault L, Guibert B, Cherfils J . (2003). Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. Nature 426: 525–530.

    Article  CAS  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A . (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70: 401–410.

    Article  CAS  Google Scholar 

  • Santy LC, Casanova JE . (2001). Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J Cell Biol 154: 599–610.

    Article  CAS  Google Scholar 

  • Simpson KJ, Dugan AS, Mercurio AM . (2004). Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res 64: 8694–8701.

    Article  CAS  Google Scholar 

  • Tague SE, Muralidharan V, D'Souza-Schorey C . (2004). ADP-ribosylation factor 6 regulates tumor cell invasion through the activation of the MEK/ERK signaling pathway. Proc Natl Acad Sci USA 101: 9671–9676.

    Article  CAS  Google Scholar 

  • Varnai P, Bondeva T, Tamas P, Toth B, Buday L, Hunyady L et al. (2005). Selective cellular effects of overexpressed pleckstrin-homology domains that recognize PtdIns(3,4,5)P3 suggest their interaction with protein binding partners. J Cell Sci 118: 4879–4888.

    Article  CAS  Google Scholar 

  • Venkateswarlu K, Oatey PB, Tavare JM, Cullen PJ . (1998). Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase. Curr Biol 8: 463–466.

    Article  CAS  Google Scholar 

  • Viaud J, Zeghouf M, Barelli H, Zeeh JC, Padilla A, Guibert B et al. (2007). Structure-based discovery of an inhibitor of Arf activation by Sec7 domains through targeting of protein-protein complexes. Proc Natl Acad Sci USA 104: 10370–10375.

    Article  CAS  Google Scholar 

  • Vivanco I, Sawyers CL . (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2: 489–501.

    Article  CAS  Google Scholar 

  • Wang F, Herzmark P, Weiner OD, Srinivasan S, Servant G, Bourne HR . (2002). Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat Cell Biol 4: 513–518.

    Article  CAS  Google Scholar 

  • Yang CZ, Heimberg H, D'Souza-Schorey C, Mueckler MM, Stahl PD . (1998). Subcellular distribution and differential expression of endogenous ADP-ribosylation factor 6 in mammalian cells. J Biol Chem 273: 4006–4011.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Joan Brugge (Harvard Medical School), Dr Tamas Balla (National Institutes of Health) and Dr Philippe Chavrier (Institut Curie) for the gifts of plasmids and cells. We thank Dr Jeff Peterson (Fox Chase Cancer Center, Philadelphia, PA, USA) for providing valuable comments. This work was supported by Smith Family Award for Excellence in Biomedical Research and National Institute on Aging Mentored Research Scientist Career Development Award (to AD), an Innovator Award from US Army (DAMD17-02-1-0403), National Cancer Institute (RO1 CA34722/PO1-50661) (to BSS) and the National Institute on Aging (R37 AG012859) (to JY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Degterev.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, B., Skidan, I., Yang, J. et al. Inhibition of cell migration by PITENINs: the role of ARF6. Oncogene 31, 4317–4332 (2012). https://doi.org/10.1038/onc.2011.593

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.593

Keywords

This article is cited by

Search

Quick links