Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Anthracyclines induce the accumulation of mutant p53 through E2F1-dependent and -independent mechanisms

Abstract

Mutant p53 frequently accumulates in cancer cells and promotes tumor cell invasion, as part of its gain of function. Its accumulation is partially due to enhanced stability, but little is known about how the mRNA levels of mutant p53 can be regulated. Likewise, the impact of cancer therapy on the levels of mutant p53 is poorly understood. We show here that the anthracyclines doxorubicin, daunorubicin and epirubicin further increase the amounts of mutant p53 mRNA and protein in cancer cells. Moreover, we show for the first time that the transcription factor E2F1 associates with the promoter DNA of TP53. Upon genotoxic treatment, E2F1 contributed to the expression of mutant p53, both directly and through induction of TAp73. In contrast, the anthracycline idarubicin and also another topoisomerase inhibitor, etoposide, failed to increase the levels of p53 mRNA, despite their ability to induce the synthesis of TAp73 mRNA. Instead, a natural antisense transcript of TP53, WRAP53, was strongly augmented by idarubicin and etoposide, but only less so by the other anthracyclines under study. RNA corresponding to the first exon of WRAP53 was mainly found in cell nuclei and it reduced the levels of mutant p53. Taken together, this suggests a reciprocal activation pattern of TP53 and WRAP53 by different chemotherapeutics. Reducing the levels of mutant p53 by small-interfering RNA increased chemosensitivity, and idarubicin prevented cell survival more efficiently than the mutant p53-inducing doxorubicin. We conclude that even closely related anthracyclines induce the synthesis of different, opposing transcripts from the TP53 locus. When using these drugs for cancer therapy, the increased levels of mutant p53 may augment its gain of function and thus favor unwanted chemoresistance and tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B et al. (2009). A mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137: 87–98.

    Article  CAS  Google Scholar 

  • Blandino G, Levine AJ, Oren M . (1999). Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18: 477–485.

    Article  CAS  Google Scholar 

  • Bode AM, Dong Z . (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4: 793–805.

    Article  CAS  Google Scholar 

  • Bush JA, Li G . (2002). Cancer chemoresistance: the relationship between p53 and multidrug transporters. Int J Cancer 98: 323–330.

    Article  CAS  Google Scholar 

  • Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K et al. (1998). Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281: 1677–1679.

    Article  CAS  Google Scholar 

  • Capranico G, Butelli E, Zunino F . (1995). Change of the sequence specificity of daunorubicin-stimulated topoisomerase II DNA cleavage by epimerization of the amino group of the sugar moiety. Cancer Res 55: 312–317.

    CAS  PubMed  Google Scholar 

  • Capranico G, Zunino F, Kohn KW, Pommier Y . (1990). Sequence-selective topoisomerase II inhibition by anthracycline derivatives in SV40 DNA: relationship with DNA binding affinity and cytotoxicity. Biochemistry 29: 562–569.

    Article  CAS  Google Scholar 

  • Cashman DJ, Kellogg GE . (2004). A computational model for anthracycline binding to DNA: tuning groove-binding intercalators for specific sequences. J Med Chem 47: 1360–1374.

    Article  CAS  Google Scholar 

  • Collins I, Weber A, Levens D . (2001). Transcriptional consequences of topoisomerase inhibition. Mol Cell Biol 21: 8437–8451.

    Article  CAS  Google Scholar 

  • Corbett AH, Hong D, Osheroff N . (1993). Exploiting mechanistic differences between drug classes to define functional drug interaction domains on topoisomerase II. Evidence that several diverse DNA cleavage-enhancing agents share a common site of action on the enzyme. J Biol Chem 268: 14394–14398.

    CAS  PubMed  Google Scholar 

  • Crampton N, Bonass WA, Kirkham J, Rivetti C, Thomson NH . (2006). Collision events between RNA polymerases in convergent transcription studied by atomic force microscopy. Nucleic Acids Res 34: 5416–5425.

    Article  CAS  Google Scholar 

  • Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A et al. (2006). Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10: 191–202.

    Article  CAS  Google Scholar 

  • Dumaz N, Meek DW . (1999). Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J 18: 7002–7010.

    Article  CAS  Google Scholar 

  • Hargrave RM, Davey MW, Davey RA, Kidman AD . (1995). Development of drug resistance is reduced with idarubicin relative to other anthracyclines. Anticancer Drugs 6: 432–437.

    Article  CAS  Google Scholar 

  • Heinlein C, Krepulat F, Lohler J, Speidel D, Deppert W, Tolstonog GV . (2008). Mutant p53(R270H) gain of function phenotype in a mouse model for oncogene-induced mammary carcinogenesis. Int J Cancer 122: 1701–1709.

    Article  CAS  Google Scholar 

  • Hershko T, Ginsberg D . (2004). Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J Biol Chem 279: 8627–8634.

    Article  CAS  Google Scholar 

  • Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W et al. (2000). Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407: 645–648.

    Article  CAS  Google Scholar 

  • Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E et al. (2002). MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 21: 6236–6245.

    Article  CAS  Google Scholar 

  • Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK et al. (2006). A topoisomerase II beta-mediated dsDNA break required for regulated transcription. Science 312: 1798–1802.

    Article  CAS  Google Scholar 

  • Kurz EU, Douglas P, Lees-Miller SP . (2004). Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J Biol Chem 279: 53272–53281.

    Article  CAS  Google Scholar 

  • Lai EC . (2002). Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30: 363–364.

    Article  CAS  Google Scholar 

  • Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. (2004). Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119: 861–872.

    Article  CAS  Google Scholar 

  • Lavorgna G, Dahary D, Lehner B, Sorek R, Sanderson CM, Casari G . (2004). In search of antisense. Trends Biochem Sci 29: 88–94.

    Article  CAS  Google Scholar 

  • Liu G, McDonnell TJ, Montes de Oca Luna R, Kapoor M, Mims B, El-Naggar AK et al. (2000). High metastatic potential in mice inheriting a targeted p53 missense mutation. Proc Natl Acad Sci USA 97: 4174–4179.

    Article  CAS  Google Scholar 

  • Liu H, Lu ZG, Miki Y, Yoshida K . (2007). Protein kinase C delta induces transcription of the TP53 tumor suppressor gene by controlling death-promoting factor Btf in the apoptotic response to DNA damage. Mol Cell Biol 27: 8480–8491.

    Article  CAS  Google Scholar 

  • Liu H, Hew HC, Lu ZG, Yamaguchi T, Miki Y, Yoshida K . (2009). DNA damage signalling recruits RREB-1 to the p53 tumour suppressor promoter. Biochem J 422: 543–551.

    Article  CAS  Google Scholar 

  • Lotfi K, Zackrisson AL, Peterson C . (2002). Comparison of idarubicin and daunorubicin regarding intracellular uptake, induction of apoptosis, and resistance. Cancer Lett 178: 141–149.

    Article  CAS  Google Scholar 

  • Lozano G . (2007). The oncogenic roles of p53 mutants in mouse models. Curr Opin Genet Dev 17: 66–70.

    Article  CAS  Google Scholar 

  • Mahmoudi S, Henriksson S, Corcoran M, Mendez-Vidal C, Wiman KG, Farnebo M . (2009). Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol Cell 33: 462–471.

    Article  CAS  Google Scholar 

  • Mahmoudi S, Henriksson S, Weibrecht I, Smith S, Soderberg O, Stromblad S et al. (2010). WRAP53 is essential for Cajal body formation and for targeting the survival of motor neuron complex to Cajal bodies. PLoS Biol 8: e1000521.

    Article  Google Scholar 

  • Marin MC, Jost CA, Brooks LA, Irwin MS, O'Nions J, Tidy JA et al. (2000). A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat Genet 25: 47–54.

    Article  CAS  Google Scholar 

  • Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A et al. (2006). TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34: D108–D110.

    Article  CAS  Google Scholar 

  • Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L . (2004). Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56: 185–229.

    Article  CAS  Google Scholar 

  • Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S et al. (2009). Mutant p53 drives invasion by promoting integrin recycling. Cell 139: 1327–1341.

    Article  Google Scholar 

  • Nitiss JL . (2009). DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 9: 327–337.

    Article  CAS  Google Scholar 

  • Pediconi N, Ianari A, Costanzo A, Belloni L, Gallo R, Cimino L et al. (2003). Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat Cell Biol 5: 552–558.

    Article  CAS  Google Scholar 

  • Prescott EM, Proudfoot NJ . (2002). Transcriptional collision between convergent genes in budding yeast. Proc Natl Acad Sci USA 99: 8796–8801.

    Article  CAS  Google Scholar 

  • Raman V, Martensen SA, Reisman D, Evron E, Odenwald WF, Jaffee E et al. (2000). Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 405: 974–978.

    Article  CAS  Google Scholar 

  • Robinson MJ, Corbett AH, Osheroff N . (1993). Effects of topoisomerase II-targeted drugs on enzyme-mediated DNA cleavage and ATP hydrolysis: evidence for distinct drug interaction domains on topoisomerase II. Biochemistry 32: 3638–3643.

    Article  CAS  Google Scholar 

  • Stiewe T, Putzer BM . (2000). Role of the p53-homologue p73 in E2F1-induced apoptosis. Nat Genet 26: 464–469.

    Article  CAS  Google Scholar 

  • Strano S, Dell'Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G . (2007). Mutant p53: an oncogenic transcription factor. Oncogene 26: 2212–2219.

    Article  CAS  Google Scholar 

  • Strano S, Munarriz E, Rossi M, Cristofanelli B, Shaul Y, Castagnoli L et al. (2000). Physical and functional interaction between p53 mutants and different isoforms of p73. J Biol Chem 275: 29503–29512.

    Article  CAS  Google Scholar 

  • Tanaka T, Halicka HD, Traganos F, Seiter K, Darzynkiewicz Z . (2007). Induction of ATM activation, histone H2AX phosphorylation and apoptosis by etoposide: relation to cell cycle phase. Cell Cycle 6: 371–376.

    Article  CAS  Google Scholar 

  • Terzian T, Suh YA, Iwakuma T, Post SM, Neumann M, Lang GA et al. (2008). The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev 22: 1337–1344.

    Article  CAS  Google Scholar 

  • Tufarelli C, Stanley JA, Garrick D, Sharpe JA, Ayyub H, Wood WG et al. (2003). Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 34: 157–165.

    Article  CAS  Google Scholar 

  • Urist M, Tanaka T, Poyurovsky MV, Prives C . (2004). p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev 18: 3041–3054.

    Article  CAS  Google Scholar 

  • van Hille B, Perrin D, Hill BT . (1999). Differential in vitro interactions of a series of clinically useful topoisomerase-interacting compounds with the cleavage/religation activity of the human topoisomerase IIalpha and IIbeta isoforms. Anticancer Drugs 10: 551–560.

    Article  CAS  Google Scholar 

  • Wang C, Chen L, Hou X, Li Z, Kabra N, Ma Y et al. (2006). Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 8: 1025–1031.

    Article  CAS  Google Scholar 

  • Wang S, El-Deiry WS . (2006). p73 or p53 directly regulates human p53 transcription to maintain cell cycle checkpoints. Cancer Res 66: 6982–6989.

    Article  CAS  Google Scholar 

  • Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH et al. (2009). p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 11: 694–704.

    Article  CAS  Google Scholar 

  • Wutz A, Smrzka OW, Schweifer N, Schellander K, Wagner EF, Barlow DP . (1997). Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389: 745–749.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M Haubrock for the analysis of E2F1 promoter sequences and C Hippel and A Dickmanns for excellent technical assistance. We further thank M Farnebo, K Wiman, K Heyninck and C Bamberger for providing plasmids used in this study and helpful advice. MB was supported by the Master/PhD Program Molecular Biology and the Göttingen Graduate School of Neurosciences and Molecular Biosciences, funded by the German excellence initiative (funding line 1). Our work was supported by the German Cancer Aid/Dr Mildred Scheel Stiftung, the EU 6th Framework Program, the German Research Foundation DFG and the Wilhelm Sander Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Dobbelstein.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bug, M., Dobbelstein, M. Anthracyclines induce the accumulation of mutant p53 through E2F1-dependent and -independent mechanisms. Oncogene 30, 3612–3624 (2011). https://doi.org/10.1038/onc.2011.72

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.72

Keywords

This article is cited by

Search

Quick links