Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Drug resistance in mutant FLT3-positive AML

Abstract

Mutant Fms-Like Tyrosine kinase-3 (FLT3), which is expressed in the leukemic cells of a subpopulation of acute myeloid leukemia (AML) patients, represents an attractive target for the therapy of AML. There are several FLT3 inhibitors presently in clinical trials with sufficient efficacy and toxicity features to warrant further testing in combination with standard therapies. However, the transient and partial responses observed in AML patients treated with FLT3 inhibitors, coupled with the discovery of drug-resistant leukemic blast cells in AML patients, have made resistance to FLT3 inhibitors a growing concern. In this study, we provide an overview of the role of mutant FLT3 in AML, FLT3 inhibitors under clinical and preclinical investigation, mechanisms of resistance to FLT3 inhibitors, and possible therapeutic approaches to overcoming this resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adam M, Pogacic V, Bendit M, Chappuis R, Nawijn MC, Duyster J et al. (2006). Targeting PIM kinases impairs survival of hematopoietic cells transformed by kinase inhibitor-sensitive and kinase inhibitor-resistant forms of Fms-like tyrosine kinase 3 and BCR/ABL. Caner Res 66: 3828–3835.

    Article  CAS  Google Scholar 

  • Albert DH, Tapang P, Magoc TJ, Pease LJ, Reuter DR, Wei RQ et al. (2006). Preclinical activity of ABT-869: a multitargeted receptor tyrosine kinase inhibitor. Mol Cancer Ther 5: 995–1006.

    Article  CAS  PubMed  Google Scholar 

  • Al Shaer L, Walsby E, Gilkes A, Tonks A, Walsh V, Mills K et al. (2008). Heat shock protein 90 inhibition is cytotoxic to primary AML cells expressing mutant FLT3 and results in altered downstream signaling. Br J Haematol 141: 483–493.

    Article  CAS  PubMed  Google Scholar 

  • Ashley DM, Bol SJ, Kannourakis G . (1994). Human bone marrow stromal cell contact and soluble factors have different effects on the survival and proliferation of paediatric B-lineage acute lymphoblastic leukaemic blasts. Leuk Res 18: 337–346.

    Article  CAS  PubMed  Google Scholar 

  • Auclair D, Miller D, Yatsula V, Pickett W, Carter C, Chang Y et al. (2007). Antitumor activity of sorafenib in FLT3-driven leukemic cells. Leukemia 21: 439–445.

    Article  CAS  PubMed  Google Scholar 

  • Bagrintseva K, Geisenhof S, Kern R, Eichenlaub S, Reindl C, Ellwart JW et al. (2005). FLT3=ITD-TKD dual mutants associated with AML confer resistance to FLT3 PTK inhibitors and cytotoxic agents by overexpression of Bcl-x(L). Blood 105: 3679–3685.

    Article  CAS  PubMed  Google Scholar 

  • Bagrintseva K, Schwab R, Kohl TM, Schnittger S, Eichenlaub S, Ellwart JW et al. (2004). Mutations in the tyrosine kinase domain of FLT3 define a new molecular mechanism of acquired drug resistance to PTK inhibitors in FLT3-ITD-transformed hematopoietic cells. Blood 103: 2266–2275.

    Article  CAS  PubMed  Google Scholar 

  • Bang SM, Ahn JY, Park J, Park SH, Park J, Cho EK et al. (2008). Low frequency and variability of FLT3 mutations in Korean patients with acute myeloid leukemia. J Korean Med Sci 23: 833–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barry EV, Clark JJ, Cools J, Roesel J, Gilliland DG . (2007). Uniform sensitivity of FLT3 activation loop mutants to the tyrosine kinase inhibitor midostaurin. Blood 110: 4476–4479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bojko P, Pawloski D, Stellberg W, Schroder JK, Seeber S . (2002). Flt3 ligand and thrombopoietin serum levels during peripheral blood stem cell mobilization with chemotherapy and recombinant human glycosylated granulocyte colony-stimulating factor (rhu-G-CSF, lenograstim) and after high-dose chemotherapy. 81: 522–528.

  • Bradstock K, Bianchi A, Makrynikola V, Filshie R, Gottlieb D . (1996). Long-term survival and proliferation of precursor B acute lymphoblastic leukemia cells on human bone marrow stroma. Leukemia 10: 813–820.

    CAS  PubMed  Google Scholar 

  • Brandts CH, Sargin B, Rode M, Biermann C, Lindtner B, Schwable J et al. (2005). Constitutive activation of Akt by Flt3 internal tandem duplications is necessary for increased survival, proliferation, and myeloid transformation. Cancer Res 65: 9643–9650.

    Article  CAS  PubMed  Google Scholar 

  • Brietenbuecher F, Markova B, Kasper S, Carius B, Stauder T, Bohmer FD et al. (2009). A novel molecular mechanism of primary resistance to FLT3-kinase inhibitors in acute myeloid leukemia. Blood 113: 4063–4073.

    Article  CAS  Google Scholar 

  • Brown P, Meshinchi S, Levis M, Alonzo TA, Gerbing R, Lange B et al. (2004). Pediatric AML primary samples with FLT3-ITD mutations are preferentially killed by FLT3 inhibition. Blood 104: 1841–1849.

    Article  CAS  PubMed  Google Scholar 

  • Burgess MR, Skaggs BJ, Shah NP, Lee FY, Sawyers CL . (2005). Comparative analysis of two clinically active BCR-ABL kinase inhibitors reveals the role of conformation-specific binding in resistance. Proc Natl Acad Sci USA 102: 3395–3400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caligiuri MA, Briesewitz R, Yu J, Wang L, Wei M, Arnoczky KJ et al. (2007). Novel c-CBL and CBL-b ubiquitin ligase mutations in human acute myeloid leukemia. Blood 110: 1022–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao Q, Sprankle KG, Grotzfeld RM, Lai AG, Carter TA, Velasco AM et al. (2009). Identification of N-(5-tert-butyl-isoxazol-3-yl)-N′-[4-[7-(2-morpholin-4-yl-ethoxy)imidazo[2,1-b][1,3]benzothiazol-2-yl]phenyl]urea dihydrochloride (AC220), a uniquely potent, selective, and efficacious FMS-like tyrosine kinase-3 (FLT3) inhibitor. J Med Chem 52: 7808–7816.

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Paz K . (2008). Tandutinib, an oral, small molecule inhibitor of FLT3 for the treatment of AML and other cancer indications. IDrugs 11: 46–56.

    CAS  PubMed  Google Scholar 

  • Chu SJ, Small D . (2009). Mechanisms of resistance to FLT3 inhibitors. Drug Resist Updates 12: 8–16.

    Article  CAS  Google Scholar 

  • Clark JJ, Cools J, Curley DP, Yu JC, Lokker NA, Giese NA et al. (2004). Variable sensitivity of FLT3 activation loop mutations to the small molecule tyrosine kinase inhibitor MLN518. Blood 104: 2867–2872.

    Article  CAS  PubMed  Google Scholar 

  • Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J et al. (2003). A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. New Engl J Med 348: 1201–1214.

    Article  CAS  PubMed  Google Scholar 

  • Cortes J, Roboz GJ, Kantarjian HM, Feldman EJ, Karp JE, Pratz KW et al. (2008). A Phase I dose escalation study of KW-2449, an oral multi-kinase inhibitor against FLT3, Abl, FGFR1 and Aurora in patients with relapsed/refractory AML, ALL and MDS or resistant/intolerant CML. Blood 2967 (Abstract); http://ash.confex.com/ash/2008/webprogram/Paper9833.html.

  • Cramer K, Nieborowska-Skorska M, Koptyra M, Slupianek A, Penserga ET et al. (2008). BCR/ABL and other kinases from chronic myeloproliferative disorders stimulate single-strand annealing, an unfaithful DNA double-strand break repair. Cancer Res 68: 6884–6888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das J, Chen P, Norris D, Padmanabha R, Lin J, Moquin RV et al. (2006). 2-Aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies towards the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (Dasatinib; BMS-354825) as a potent pan-Src kinase inhibitor. J Med Chem 49: 6819–6832.

    Article  CAS  PubMed  Google Scholar 

  • Deininger MWN, Bradeen H, Jia T, O'Hare T, Willis SG, Lee F et al. (2005). Comparison of imatinib, AMN107, and dasatinib in an accelerated cell-based mutagenesis screen. Blood 106: 204a.

    Article  Google Scholar 

  • Despars G, O'Neill HC . (2006). Splenic endothelial cell lines support development of dendritic cells from bone marrow. Stem Cells 24: 1496–1504.

    Article  CAS  PubMed  Google Scholar 

  • Dimartino JF, Cleary ML . (1999). Mll rearrangements in haematological malignancies: lessons from clinical and biological studies. Br J Haematol 106: 614–626.

    Article  CAS  PubMed  Google Scholar 

  • Du C, Fang M, Li Y, Wang X . (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33–42.

    Article  CAS  PubMed  Google Scholar 

  • Dunbar AJ, Gondek LP, O′Keefe CL, Makishima H, Rataul MS, Szpurka H et al. (2008). 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res 68: 10349–10357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes MS, Reddy MM, Gonneville JR, DeRoo SC, Podar K, Griffin JD et al. (2009). BCR-ABL promotes the frequency of mutagenic single-strand annealing DNA repair. Blood 114: 1813–1819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiedler W, Mesters R, Tinnefeld H, Loges S, Staib P, Duhrsen U et al. (2003). A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood 102: 2763–2767.

    Article  CAS  PubMed  Google Scholar 

  • Fiedler W, Serve H, Dohner H, Schwittay M, Ottmann OG, O'Farrell AM et al. (2005). A Phase I study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 105: 968–993.

    Article  CAS  Google Scholar 

  • Galban S, Hwang C, Rumble JM, Oetien KA, Wright CW, Boudreault A et al. (2009). Cytoprotective effects of IAPs revealed by a small molecule antagonist. Biochem J 417: 765–771.

    Article  CAS  PubMed  Google Scholar 

  • Gaul MD, Xu G, Kirkpatrick J, Ott H, Baumann CA . (2007). 4-Amino-6-piperazin-1-yl-pyrimidine-5-carbaldehyde oximes as potent FLT-3 inhibitors. Bioorg Med Chem Lett 17: 4861–4865.

    Article  CAS  PubMed  Google Scholar 

  • Gazit A, Yee K, Uecker A, Bohmer FD, Sioblom T, Ostman A et al. (2003). Tricyclic quinoxalines as potent kinase inhibitors of PDGFR kinase, Flt3 and Kit. Bioorg Med Chem 11: 2007–2018.

    Article  CAS  PubMed  Google Scholar 

  • Giles FJ, Stopeck AT, Silverman LR, Lancet JE, Cooper MA, Hannah AL et al. (2003). SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood 102: 795–801.

    Article  CAS  PubMed  Google Scholar 

  • Gilliland DG, Griffin JD . (2002). The roles of FLT3 in hematopoiesis and leukemia. Blood 100: 1532–1542.

    Article  CAS  PubMed  Google Scholar 

  • Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. (2001). Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293: 876–880.

    Article  CAS  PubMed  Google Scholar 

  • Gracias V, Ji Z, Akritopoulou-Zanze I, Abad-Zapatero C, Huth JR, Song D et al. (2008). Scaffold oriented synthesis. Part 2: Design, synthesis and biological evaluation of pyrimido-diazepines as receptor tyrosine kinase inhibitors. Bioorg Med Chem Lett 18: 2691–2695.

    Article  CAS  PubMed  Google Scholar 

  • Grand FH, Hidalgo-Curtis CE, Ernst T, Zoi K, Zoi C, McGuire C et al. (2009). Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 113: 6182–6192.

    Article  CAS  PubMed  Google Scholar 

  • Greaves MF, Wiemels J . (2003). Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer 3: 639–649.

    Article  CAS  PubMed  Google Scholar 

  • Grundler R, Brault L, Gasser C, Bullock AN, Dechow T, Woetzel S et al. (2009). Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J Exp Med 206: 1957–1970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrouahen BS, Futami M, Vaklavas C, Kanerva J, Whichard ZL, Nwawka K et al. (2010). Dasatinib inhibits the growth of molecularly heterogeneous myeloid leukemias. Clin Cancer Res 16: 1149–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidel F, Solem FK, Breitenbuecher F, Lipka DB, Kasper S, Thiede MH et al. (2006). Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain. Blood 107: 293–300.

    Article  CAS  PubMed  Google Scholar 

  • Horiike S, Yokota S, Nakao M, Iwai T, Sasai Y, Kaneko H et al. (1997). Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia. Leukemia 11: 1442–1446.

    Article  CAS  PubMed  Google Scholar 

  • Hunter HM, Pallis M, Seedhouse CH, Grundy M, Gray C, Russell NH . (2004). The expression of P-glycoprotein in AML cells with FLT3 internal tandem duplications is associated with reduced apoptosis in response to FLT3 inhibitors. Br J Haematol 127: 26–33.

    Article  CAS  PubMed  Google Scholar 

  • Ikezoe T, Nishioka C, Tasaka T, Yang Y, Komatsu N, Togitani K et al. (2006). The antitumor effects of sunitinib (formerly SU11248) against a variety of human hematologic malignancies: enhancement of growth inhibition via inhibition of mammalian target of rapamycin signaling. Mol Cancer Ther 5: 2522–2530.

    Article  CAS  PubMed  Google Scholar 

  • Ishida H, Isami S, Matsumura T, Umehara H, Yamashita Y, Kajita J et al. (2008). Novel and orally active 5-(1,3,4-oxadiazol-2-yl)pyrimidine derivatives as selective FLT3 inhibitors. Bioorg Med Chem Lett 18: 5472–5477.

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Paez JG, Lee JC, Bo R, Stone RM, DeAngelo DJ et al. (2004). Identifying and characterizing a novel activating mutation of the FLT3 tyrosine kinase in AML. Blood 104: 1855–1858.

    Article  CAS  PubMed  Google Scholar 

  • Jin G, Matsushita H, Asai S, Tsukamoto H, Ono R, Nosaka T et al. (2009). FLT3-ITD induces ara-C resistance in myeloid leukemic cells through the repression of the ENT1 expression. Biochem Biophys Res Commun 390: 1001–1006.

    Article  CAS  PubMed  Google Scholar 

  • Kancha RK, Grundler R, Peschel C, Duyster J . (2007). Sensitivity toward sorafenib and sunitinib varies between different activating and drug-resistant FLT3-ITD mutations. Exp Hematol 35: 1522–1526.

    Article  CAS  PubMed  Google Scholar 

  • Kasper S, Breitenbuecher F, Hoehn Y, Heidel F, Lipka DB, Markova B et al. (2008). The kinase inhibitor LS104 induces apoptosis, enhances cytotoxic effects of chemotherapeutic drugs and is targeting the receptor tyrosine kinase FLT3 in acute myeloid leukemia. Leuk Res 32: 1698–1708.

    Article  CAS  PubMed  Google Scholar 

  • Kayser S, Schlenk RF, Londono MC, Breitenbuecher F, Wittke K, Du J et al. (2009). Insertion of FLT3 internal tandem duplication in the tyrosine kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood 114: 2386–2392.

    Article  CAS  PubMed  Google Scholar 

  • Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG . (2002a). FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood 99: 310–318.

    Article  CAS  PubMed  Google Scholar 

  • Kelly LM, Yu JC, Boulton CL, Apatira M M, Li J, Sullivan CM et al. (2002b). CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia. Cancer Cell 5: 421–432.

    Article  Google Scholar 

  • Kim KT, Baird K, Ahn JY, Meltzer P, Lilly M, Levis M et al. (2005). Pim-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival. Blood 105: 1759–1767.

    Article  CAS  PubMed  Google Scholar 

  • Kim KT, Levis M, Small D . (2006). Constitutively activated FLT3 phosphorylates BAD partially through pim-1. Br J Haematol 134: 500–509.

    Article  CAS  PubMed  Google Scholar 

  • Kindler T, Breitenbuecher F, Kasper S, Estey E, Giles F, Feldman E et al. (2005). Identification of a novel activating mutation (Y842C) within the activation loop of FLT3 in patients with acute myeloid leukemia (AML). Blood 105: 335–340.

    Article  CAS  PubMed  Google Scholar 

  • Kiyoi H, Shiotsu Y, Ozeki K, Yamaji S, Kosugi H, Umehara H et al. (2007). A novel FLT3 inhibitor FI-700 selectively suppresses the growth of leukemia cells with FLT3 mutations. Clin Cancer Res 13: 4575–4582.

    Article  CAS  PubMed  Google Scholar 

  • Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H et al. (1998). Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 12: 1333–1337.

    Article  CAS  PubMed  Google Scholar 

  • Knapper S, Burnett AK, Littlewood T, Kell WJ, Agrawal S, Chopra R et al. (2006). A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 108: 3262–3270.

    Article  CAS  PubMed  Google Scholar 

  • Kohl TM, Hellinger C, Ahmed F, Buske C, Hiddermann W, Bohlander SK et al. (2007). BH3 mimetic ABT-737 neutralizes resistance to FLT3 inhibitor treatment mediated by FLT3-independent expression of BCL2 in primary AML blasts. Leukemia 21: 1763–1772.

    Article  CAS  PubMed  Google Scholar 

  • Komeno Y, Kurokawa M, Imai Y, Takeshita M, Matsumura T, Kubo K et al. (2005). Identification of Ki23819, a highly potent inhibitor of kinase activity of mutant FLT3 receptor tyrosine kinase. Leukemia 19: 930–935.

    Article  CAS  PubMed  Google Scholar 

  • Kondo M, Horibe K, Takahashi Y, Matsumoto K, Fukuda M, Inaba J et al. (1999). Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol 33: 525–529.

    Article  CAS  PubMed  Google Scholar 

  • Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M . (2002). Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 16: 1713–1724.

    Article  CAS  PubMed  Google Scholar 

  • Kornblau SM, Singh N, Qiu Y, Chen W, Zhang N, Coombes KR . (2010). Highly phosphorylated FOXO3A is an adverse prognostic factor in acute myeloid leukemia. Clin Cancer Res 16: 1865–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornblau SM, Womble M, Qiu YH, Jackson CE, Chen W, Konopleva M et al. (2006). Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood 108: 2358–2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumagai M, Manabe A, Pui CH, Behm FG, Raimondi SC, Hancock ML et al. (1996). Stroma-supported culture in childhood B-lineage acute lymphoblastic leukemia cells predicts treatment outcome. J Clin Invest 97: 755–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurokawa M, Zhao C, Reya T, Kornbluth S . (2008). Inhibition of apoptosome formation by supression of Hsp90beta phosphorylation in tyrosine kinase-induced leukemias. Mol Cell Biol 28: 5494–5506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagneaux L, Delforge A, Bron D, De Bruyn C, Stryckmans P . (1998). Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 91: 2387–2396.

    Article  CAS  PubMed  Google Scholar 

  • Lagneaux L, Delforge A, De Bruyn C, Bernier M, Bron D . (1999). Adhesion to bone marrow stroma inhibits apoptosis of chronic lymphocytic leukemia cells. Leukemia Lymphoma 35: 445–453.

    Article  CAS  PubMed  Google Scholar 

  • Lee BD, Sevcikova S, Kogan SC . (2007). Dual treatment with FLT3 inhibitor SU11657 and doxorubicin increases survival of leukemic mice. Leuk Res 31: 1131–1134.

    Article  CAS  PubMed  Google Scholar 

  • Levis M, Allebach J, Tse KF, Zheng R, Baldwin BR, Smith BD et al. (2002). A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 99: 3885–3891.

    Article  CAS  PubMed  Google Scholar 

  • Libura M, Asnafi V, Tu A, Delabesse E, Tigaud I, Cymbalista F et al. (2003). FLT3 and MLL intragenic abnormalities in AML reflect a common category of genotoxic stress. Blood 102: 2198–2204.

    Article  CAS  PubMed  Google Scholar 

  • Lierman E, Lahortiga I, Van Miegroet H, Mentens N, Marynen P, Cools J . (2007). The ability of sorafenib to inhibit oncogenic PDGFRbeta and FLT3 mutants and overcome resistance to other small molecule inhibitors. Haematologica 92: 27–34.

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T et al. (2000). Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408: 1004–1008.

    Article  CAS  PubMed  Google Scholar 

  • Loh ML, Sakai DS, Flotho C, Kang M, Fliegauf M, Archambeault S et al. (2009). Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood 114: 1859–1863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes de Menezes DE, Peng J, Garrett EN, Louie SG, Lee SH, Wiesmann M et al. (2005). CHIR-258: A potent inhibitor of FLT3 kinase in experimental tumor xenograft models of human acute myelogenous leukemia. Clin Cancer Res 11: 5281–5291.

    Article  CAS  PubMed  Google Scholar 

  • Lyman SD, Seaberg M, Hanna R, Zappone J, Brasel K, Abkowitz JL et al. (1995). Plasma/serum levels of flt3 ligand are low in normal individuals and highly elevated in patients with Fanconi anemia and acquired aplastic anemia. Blood 86: 4091–4096.

    Article  CAS  PubMed  Google Scholar 

  • Makishima H, Cazzolli H, Szpurka H, Dunbar A, Tiu R, Huh J et al. (2009). Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. J Clin Oncol 27: 6109–6116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melnick JS, Janes J, Kim S, Chang JY, Sipes DG, Gunderson D et al. (2006). An efficient rapid system for profiling the cellular activities of molecular libraries. Proc Natl Acad Sci USA 103: 3153–3158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meshinchi S, Alonzo TA, Stirewalt DL, Zwaan M, Zimmerman M, Reinhardt D et al. (2006). Clinical implications of FLT3 mutations in pediatric AML. Blood 108: 3654–3661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meshinchi S, Stirewalt DL, Alonzo TA, Boggon TJ, Gerbing RB, Rocnik JL et al. (2008). Structural and numerical variation of FLT3-ITD in pediatric AML. Blood 111: 4930–4933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meshinchi S, Stirewalt DL, Alonzo TA, Zhang Q, Sweetser DA, Woods WG et al. (2003). Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood 102: 1474–1479.

    Article  CAS  PubMed  Google Scholar 

  • Metzelder S, Wang Y, Wollmer E, Wanzel M, Teichler S, Chaturvedi A et al. (2009). Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood 113: 6567–6571.

    Article  CAS  PubMed  Google Scholar 

  • Mohi MG, Boulton C, Gu TL, Sternberg DW, Neuberg D, Griffin JD et al. (2004). Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc Natl Acad Sci USA 101: 3130–3135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollgard L, Deneberg S, Nahi H, Bengtzen S, Jonsson-Videsater K, Fioretos T et al. (2008). The FLT3 inhibitor PKC412 in combination with cytostatic drugs in vitro in acute myeloid leukemia. Cancer Chemother Pharmacol 62: 439–448.

    Article  PubMed  CAS  Google Scholar 

  • Molyneux G, Gibson FM, Whayman M, Turton JA . (2008). Serum FLT-3 ligand in a busulphan-induced model of chronic bone marrow hypoplasia in the female CD-1 mouse. Int J Exp Pathol 89: 159–170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mony U, Jawad M, Seedhouse C, Russell N, Pallis M . (2008). Resistance to FLT3 inhibition in an in vitro model of primary AML cells with a stem cell phenotype in a defined microenvironment. Leukemia 22: 1395–1401.

    Article  CAS  PubMed  Google Scholar 

  • Murata K, Kumagai H, Kawashima T, Tamitsu K, Irie M, Nakajima H et al. (2003). Selective cytotoxic mechanism of GTP-14564, a novel tyrosine kinase inhibitor in leukemia cells expressing a constitutively active Fms-like tyrosine kinase 3 (FLT3). J Biol Chem 278: 32892–32898.

    Article  CAS  PubMed  Google Scholar 

  • Murphy MA, Schnall RG, Venter DJ, Barnett L, Bertoncello I, Thien CB et al. (1998). Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl-deficient mice. Mol Cell Biol 18: 4872–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al. (1996). Internal tandem duplication of the FLT3 gene found in acute myeloid leukemia. Leukemia 10: 1911–1918.

    CAS  PubMed  Google Scholar 

  • Naramura M, Kole HK, Hu RJ, Gu H . (1998). Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc Natl Acad Sci USA 95: 15547–15552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishioka C, Ikezoe T, Yang J, Takeshita A, Taniguchi A, Komatsu N et al. (2008). Blockade of MEK/ERK signaling enhances sunitinib-induced growth inhibition and apoptosis of leukemia cells possessing activating mutations of the FLT3 gene. Leuk Res 32: 865–872.

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama U, Yoshino T, Ozai M, Yoshioka R, Fujisawa M, Ogasawara Y et al. (2006). Antineoplastic effect of a single oral dose of the novel Flt3 inhibitor KRN383 on xenografted human leukemic cells harboring Flt3-activating mutations. Leuk Res 30: 1541–1546.

    Article  CAS  PubMed  Google Scholar 

  • O'Farrell AM, Abrams TJ, Yuen HA, Ngai TJ, Louie SG, Yee KW et al. (2003a). SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 101: 3597–3605.

    Article  CAS  PubMed  Google Scholar 

  • O'Farrell AM, Foran JM, Fiedler W, Serve H, Paquette RL, Cooper MA et al. (2003b). An innovative Phase I clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin Cancer Res 9: 5465–5476.

    CAS  PubMed  Google Scholar 

  • O'Farrell AM, Yuen HA, Smolich B, Hannah AL, Louie SG, Hong W et al. (2004). Effects of SU5416, a small molecule tyrosine kinase receptor inhibitor, on FLT3 expression and phosphorylation in patients with refractory acute myeloid leukemia. Leuk Res 28: 679–689.

    Article  CAS  PubMed  Google Scholar 

  • O'Hare T, Walters DK, Stoffregen EP, Sherbenou DW, Heinrich MC, Deininger MW et al. (2005). Combined ABL inhibitor therapy for minimizing drug resistance in chronic myeloid leukemia. SRC/ABL inhibitors are compatible with imatinib. Clin Cancer Res 11: 6987–6993.

    Article  CAS  PubMed  Google Scholar 

  • Olsson I, Bergh G, Ehinger M, Gullberg U . (1996). Cell differentiation in acute myeloid leukemia. Eur J Haematol 57: 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Pabst T, Mueller BU, Harakawa N, Schoch C, Haferlach T, Behre G et al. (2001). AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med 7: 444–451.

    Article  CAS  PubMed  Google Scholar 

  • Paraguassú-Braga FH, Borojevic R, Bouzas LF, Barcinski MA, Bonomo A . (2003). Bone marrow stroma inhibits proliferation and apoptosis in leukemic cells through gap junction-mediated cell communication. Cell Death Differentiation 10: 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  • Patch RJ, Baumann CA, Liu J, Gibbs AC, Ott H, Lattanze J et al. (2006). Identification of 2-acylaminothiophene-3-carboxamides as potent inhibitors of FLT3. Bioorg Med Chem Lett 16: 3282–3286.

    Article  CAS  PubMed  Google Scholar 

  • Piloto O, Wright M, Brown P, Kim KT, Levis M, Small D . (2007). Prolonged exposure to FLT3 inhibitors leads to resistance via activation of parallel signaling pathways. Blood 109: 1643–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard JA, Alonzo TA, Gerbing RB, Woods WG, Lange BJ, Sweetser DA et al. (2006). FLT3 internal tandem duplication in CD34+/CD33– precursors predicts poor outcome in acute myeloid leukemia. Blood 108: 2764–2769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratz KW, Cortes J, Roboz GJ, Rao N, Arowojolu O, Stine A et al. (2009). A pharmacodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response. Blood 113: 3938–3946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratz K, Levis M . (2008). Incorporating FLT3 inhibitors into acute myeloid leukemia treatment regimens. Leuk Lymphoma 49: 852–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratz KW, Sato T, Murphy KM, Stine A, Rajkhowa T, Levis M . (2010). FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood 115: 1425–1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray A, Cowan-Jacob SW, Manley PW, Mestan J, Griffin JD . (2007). Identification of BCR-ABL point mutations conferring resistance to the Abl kinase inhibitor AMN107 (nilotinib) by a random mutagenesis study. Blood 109: 5011–5015.

    Article  CAS  PubMed  Google Scholar 

  • Recher C, Beyne-Rauzy O, Demur C, Chicanne G, Dos Santos C, Mas VM et al. (2005). Antileukemic activity of rapamycin in acute myeloid leukemia. Blood 105: 2527–2534.

    Article  CAS  PubMed  Google Scholar 

  • Reindl C, Bagrintseva K, Vempati S, Schnittger S, Ellwart JW, Wenig K et al. (2006). Point mutations in the juxtamembrane domain of FLT3 define a new class of activating mutations in AML. Blood 107: 3700–3707.

    Article  CAS  PubMed  Google Scholar 

  • Reindl C, Quentmeier H, Petropoulos K, Greif PA, Benthaus T, Argiropoulos B et al. (2009). CBL exon 8/9 mutants activate the FLT3 pathway and cluster in core binding factor/11q deletion acute myeloid leukemia/myelodysplastic syndrome subtypes. Clin Cancer Res 15: 2238–2247.

    Article  CAS  PubMed  Google Scholar 

  • Rivera VM, Xu Q, Berk L, Keats J, Wardwell S, Wang F et al. (2008). Potent antitumor activity of AP24534, an orally active inhibitor of Bcr-Abl, Flt3 and other kinases, in both in vitro and in vivo models of acute myeloid leukemia (AML). Blood 112: 1008–1009. (Abstract).

    Article  Google Scholar 

  • Rocnik JL, Okabe R, Yu JC, Lee BH, Giese N, Schenkein DP et al. (2006). Roles of tyrosine 589 and 591 in STAT5 activation and transformation mediated by FLT3-ITD. Blood 108: 1339–1345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues MS, Reddy MM, Sattler M . (2008). Cell cycle regulation by oncogenic tyrosine kinases in myeloid neoplasias: from molecular redox mechanisms to health implications. Antioxid Redox Signal 10: 1813–1848.

    Article  CAS  PubMed  Google Scholar 

  • Rombouts WJ, Blokland I, Lowenberg B, Ploemacher RE . (2000). Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the FLT3 gene. Leukemia 14: 675–683.

    Article  CAS  PubMed  Google Scholar 

  • Sallmyr A, Fan J, Datta K, Kim KT, Grosu D, Shapiro P et al. (2008). Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML. Blood 111: 3173–3182.

    Article  CAS  PubMed  Google Scholar 

  • Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S et al. (2009). Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 460: 904–908.

    Article  CAS  PubMed  Google Scholar 

  • Sargin B, Choudhary C, Crosetto N, Schmidt M H, Grundler R, Rensinghoff M et al. (2007). Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood 110: 1004–1012.

    Article  CAS  PubMed  Google Scholar 

  • Scheijen B, Ngo HT, Kang H, Griffin JD . (2004). FLT3 receptors with internal tandem duplications promote cell viability and proliferation by signaling through Foxo proteins. Oncogene 23: 3338–3349.

    Article  CAS  PubMed  Google Scholar 

  • Seedhouse CH, Hunter HM, Lloyd-Lewis B, Massip AM, Pallis M, Carter GI et al. (2006). DNA repair contributes to the drug-resistant phenotype of primary acute myeloid leukaemia cells with FLT3 internal tandem duplications and is reversed by the FLT3 inhibitor PKC412. Leukemia 20: 2130–2136.

    Article  CAS  PubMed  Google Scholar 

  • Sensintaffar J, Scott FL, Peach R, Hager JH . (2010). XIAP is not required for human tumor cell survival in the absence of an exogenous death signal. BMC Cancer 10: 11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. (2002). Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2: 117–125.

    Article  CAS  PubMed  Google Scholar 

  • Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL . (2004). Overriding imatinib resistance with a novel ABL kinse inhibitor. Science 305: 399–401.

    Article  CAS  PubMed  Google Scholar 

  • Shaked Y, Cervi D, Neuman M, Chen L, Klement G, Michaud CR et al. (2005). The splenic microenvironment is a source of proangiogenesis/inflammatory mediators accelerating the expansion of murine erythroleukemic cells. Blood 105: 4500–4507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar DB, Li J, Tapang P, Owen J, Pease LJ, Dai Y et al. (2007). ABT-869, a multitargeted receptor tyrosine kinase inhibitor: inhibition of FLT3 phosphorylation and signaling in acute myeloid leukemia. Blood 109: 3400–3408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiotsu Y, Kiyoi H, Ishikawa Y, Tanizaki R, Shimizu M, Umehara H et al. (2009). KW-2449, a novel multikinase inhibitor, suppresses the growth of leukemia cells with FLT3 mutations or T315I-mutated BCR/ABL translocation. Blood 114: 1607–1617.

    Article  CAS  PubMed  Google Scholar 

  • Siendones E, Barbarroja N, Torres LA, Buendia P, Velasco F, Dorado G et al. (2007). Inhibition of Flt3-activating mutations does not prevent constitutive activation of ERK/Akt/STAT pathways in some AML cells: a possible cause for the limited effectiveness of monotherapy with small-molecule inhibitors. Hematol Oncol 25: 30–37.

    Article  CAS  PubMed  Google Scholar 

  • Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K et al. (2004). Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 103: 3669–3676.

    Article  CAS  PubMed  Google Scholar 

  • Stirewalt DL, Radich JP . (2003). The role of FLT3 in hematopoeitic malignancies. Nat Rev Cancer 3: 650–665.

    Article  CAS  PubMed  Google Scholar 

  • Stone RM, De Angelo J, Galinsky I, Estey E, Klimek V, Grandin W et al. (2004). PKC412 FLT3 inhibitor therapy in AML: results of a Phase II trial. Ann Hematol 83 (Suppl 1): S89–S90.

    PubMed  Google Scholar 

  • Stone RM, DeAngelo DJ, Klimek V, Galinksy I, Estey E, Nimer SD et al. (2005a). Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 105: 54–60.

    Article  CAS  PubMed  Google Scholar 

  • Stone RM, Fischer T, Paquette R, Schiller G, Schiffer CA, Ehninger G et al. (2005b). Phase 1B study of PKC412, an oral FLT3 kinase inhibitor, in sequential and simultaneous combinations with daunorubicin and cytarabine (DA) induction and high-dose cytarabine consolidation in newly diagnosed patients with AML. Blood 106: 404 (Abstract).

    Article  Google Scholar 

  • Stolzel F, Steudel C, Oelschlagel U, Mohr B, Koch S, Ehninger G et al. (2010). Mechanisms of resistance against FLT3-ITD positive human acute myeloid leukemia cells. Ann Hematol 89: 653–662.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Tanaka K, Ogawa S, Kurokawa M, Mitani K, Yazaki Y et al. (1997). An acute myeloid leukemia gene, AML1, regulates transcriptional activation and hemopoietic myeloid cell differentiation antagonistically by two alternative spliced forms. Leukemia 1111: 299–302.

    Google Scholar 

  • Teller S, Kramer D, Bohmer SA, Tse KF, Small D, Mahboobi S et al. (2002). Bis(1H-2-indolyl)-1-methanones as inhibitors of the hematopoietic tyrosine kinase Flt3. Leukemia 16: 1528–1534.

    Article  CAS  PubMed  Google Scholar 

  • Thien CB, Langdon WY . (2005). Negative regulation of PTK signaling by Cbl proteins. Growth Factors 23: 161–167.

    Article  CAS  PubMed  Google Scholar 

  • Trudel S, Li ZH, Wei E, Wiesmann M, Chang H, Chen C et al. (2005). CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood 105: 2941–2948.

    Article  CAS  PubMed  Google Scholar 

  • Tse KF, Allebach J, Levis M, Smith BD, Bohmer FD, Small D . (2002). Inhibition of the transforming activity of FLT3 internal tandem duplication mutants from AML patients by a tyrosine kinase inhibitor. Leukemia 16: 2027–2036.

    Article  CAS  PubMed  Google Scholar 

  • Tse KF, Novelli E, Civin CI, Bohmer FD, Small D . (2001). Inhibition of FLT3-mediated transformation by use of a tyrosine kinase inhibitor. Leukemia 15: 1001–1010.

    Article  CAS  PubMed  Google Scholar 

  • Von Bubnoff N, Engh RA, Aberg E, Sanger J, Peschel C, Duyster J . (2009). FMS-like tyrosine kinase 3-internal tandem duplication tyrosine kinase inhibitors display a nonoverlapping profile of resistance mutations in vitro. Cancer Res 69: 3032–3041.

    Article  CAS  PubMed  Google Scholar 

  • Von Bubnoff N, Sanger J, Manley PW, Mestan J, Peschel C, Duyster J . (2006). Bcr-Abl resistance screening predicts a limited spectrum of point mutations to be associated with clinical resistance to the Abl kinase inhibitor AMN107. Blood 108: 1328–1333.

    Article  CAS  PubMed  Google Scholar 

  • Walters DK, Stoffregen EP, Heinrich MC, Deininger MW, Druker BJ . (2005). RNAi-induced down-regulation of FLT3 expression in AML cell lines increases sensitivity to MLN518. Blood 105: 2952–2954.

    Article  CAS  PubMed  Google Scholar 

  • Weisberg E, Banerji L, Wright RD, Barrett R, Ray A, Moreno D et al. (2008a). Potentiation of antileukemic therapies by the dual PI3K/PDK-1 inhibitor, BAG956: effects on BCR-ABL- and mutant FLT3-expressing cells. Blood 111: 3723–3734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisberg E, Barrett R, Liu Q, Stone R, Gray N, Griffin JD . (2009). FLT3 inhibition and mechanisms of drug resistance in mutant FLT3-positive AML. Drug Resist Updat 12: 81–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T et al. (2002). Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 1: 433–443.

    Article  CAS  PubMed  Google Scholar 

  • Weisberg E, Kung AL, Wright RD, Moreno D, Catley L, Ray A et al. (2007). Potentiation of antileukemic therapies by Smac mimetic, LBW242: effects on mutant FLT3-expressing cells. Mol Cancer Ther 6: 1951–1961.

    Article  CAS  PubMed  Google Scholar 

  • Weisberg E, Roesel J, Bold G, Furet P, Jiang J, Cools J et al. (2008b). Antileukemic effects of the novel, mutant FLT3 inhibitor NVP-AST487: effects on PKC412-sensitive and -resistant FLT3-expressing cells. Blood 112: 5161–5170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisberg E, Wright RD, McMillin DW, Mitsiades C, Ray A, Barrett R et al. (2008c). Stromal-mediated protection of tyrosine kinase inhibitor-treated BCR-ABL-expressing leukemia cells. Mol Cancer Ther 7: 1121–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wernig G, Gonneville JR, Crowley BJ, Rodrigues MS, Reddy MM, Hudon HE et al. (2008). The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes. Blood 111: 3751–3759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wodnar-Filipowicz A, Lyman SD, Gratwohl A, Tichelli A, Speck B, Nissen C . (1996). Flt3 ligand level reflects hematopoietic progenitor cell function in aplastic anemia and chemotherapy-induced bone marrow aplasia. Blood 88: 4493–4499.

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X et al. (2000). Structural basis of IAP recognition by Smac/DIABLO. Nature 408: 1008–1012.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al. (2001). Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 97: 2434–2439.

    Article  CAS  PubMed  Google Scholar 

  • Yee KW, O'Farrell AM, Smolich BD, Cherrington JM, McMahon G, Wait CL et al. (2002). SU5416 and SU5614 inhibit kinase activity of wild-type and mutant FLT3 receptor tyrosine kinase. Blood 100: 2941–2949.

    Article  CAS  PubMed  Google Scholar 

  • Youssouflan H, Rowinsky EK, Tonra J, Li Y . (2010). Targeting FMS-related tyrosine kinase receptor 3 with the human immunoglobulin G1 monoclonal antibody IMC-EB10. Cancer 116: 1013–1017.

    Article  CAS  Google Scholar 

  • Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B et al. (2009). AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 114: 2984–2992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Z, Samudio IJ, Munsell M, An J, Huang Z, Estey E et al. (2006a). Inhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias. Mol Cancer Ther 5: 3113–3121.

    Article  CAS  PubMed  Google Scholar 

  • Zeng Z, Samudio IJ, Zhang W, Estrov Z, Pelicano H, Harris D et al. (2006b). Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-molecule KP372-1 induces mitochondrial dysfunction and apoptosis in acute myelogenous leukemia. Cancer Res 66: 3737–3746.

    Article  CAS  PubMed  Google Scholar 

  • Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O et al. (2009). Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 113: 6215–6224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Konopleva M, Shi YX, McQueen T, Harris D, Ling X et al. (2008). Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst 100: 184–198.

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Bi C, Janakakumara JV, Liu SC, Chng WJ, Tay KG et al. (2009). Enhanced activation of STAT pathways and overexpression of survivin confer resistance to FLT3 inhibitors and could be therapeutic targets in AML. Blood 113: 4052–4062.

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Khng J, Jasinghe VJ, Bi C, Neo CH, Pan M et al. (2008). In vivo activity of ABT-869, a multi-target kinase inhibitor, against acute myeloid leukemia with wild-type FLT3 receptor. Leuk Res 32: 1091–1100.

    Article  CAS  PubMed  Google Scholar 

  • Zwaan CM, Meshinchi S, Radich JP, Veerman AJ, Huismans DR, Munske L et al. (2003). FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. Blood 102: 2387–2394.

    Article  CAS  PubMed  Google Scholar 

  • Zwierzina H, Anderson JE, Rollinger-Holzinger I, Torok-Storb B, Nuessler V, Lyman SD . (1999). Endogenous FLT-3 ligand serum levels are associated with disease stage in patients with myelodysplastic syndromes. Leukemia 13: 553–557.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Institutes of Health Grants (CA134660-02, MS; and CA36167 and DK50654, JDG), and a Leukemia and Lymphoma Society SCOR grant (JDG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Weisberg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisberg, E., Sattler, M., Ray, A. et al. Drug resistance in mutant FLT3-positive AML. Oncogene 29, 5120–5134 (2010). https://doi.org/10.1038/onc.2010.273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.273

Keywords

This article is cited by

Search

Quick links