Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SNF5, a core component of the SWI/SNF complex, is necessary for p53 expression and cell survival, in part through eIF4E

Abstract

SNF5, a core component of the SWI/SNF chromatin remodeling complex, is expressed as two isoforms, SNF5a and SNF5b. SNF5 is a tumor suppressor, as mutation of SNF5 leads to tumor formation and cooperates with p53 deficiency to enhance cancer susceptibility. Interestingly, lack of SNF5 inhibits cell survival and embryonic development, potentially through abnormal activation of p53. To further examine this, we generated cell lines in which SNF5a, SNF5b or both can be inducibly knocked down. We found that SNF5 knockdown leads to cell-cycle arrest in G1, and SNF5a and SNF5b are functionally redundant. We also showed that SNF5 knockdown impairs p53-dependent transcription of p21 and murine double minute 2. However, contrary to earlier reports that p53 is activated by SNF5 knockout in murine cells, SNF5 knockdown leads to decreased, but not increased, expression of both basal and stress-induced p53 in multiple human cell lines. In addition, we showed that SNF5 knockdown induces adenosine monophosphate-activated protein kinase activation and inhibits eIF4E expression. Finally, we showed that SNF5 knockdown inhibits p53 translation by eIF4E and replacement of eIF4E in SNF5 knockdown cells restores p53 expression and cell survival. Together, our study results suggest that the p53 pathway is regulated by, and mediates the activity of, SNF5 in tumor suppression and prosurvival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Brosh R, Rotter V . (2009). When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9: 701–713.

    Article  CAS  Google Scholar 

  • Caramel J, Medjkane S, Quignon F, Delattre O . (2008). The requirement for SNF5/INI1 in adipocyte differentiation highlights new features of malignant rhabdoid tumors. Oncogene 27: 2035–2044.

    Article  CAS  Google Scholar 

  • Carlson M, Laurent BC . (1994). The SNF/SWI family of global transcriptional activators. Curr Opin Cell Biol 6: 396–402.

    Article  CAS  Google Scholar 

  • Chai J, Lu X, Godfrey V, Fletcher C, Roberts CW, Van Dyke T et al. (2007). Tumor-specific cooperation of retinoblastoma protein family and Snf5 inactivation. Cancer Res 67: 3002–3009.

    Article  CAS  Google Scholar 

  • Chen X, Bargonetti J, Prives C . (1995). p53, through p21 (WAF1/CIP1), induces cyclin D1 synthesis. Cancer Res 55: 4257–4263.

    CAS  PubMed  Google Scholar 

  • Graff JR, Konicek BW, Carter JH, Marcusson EG . (2008). Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res 68: 631–634.

    Article  CAS  Google Scholar 

  • Gresh L, Bourachot B, Reimann A, Guigas B, Fiette L, Garbay S et al. (2005). The SWI/SNF chromatin-remodeling complex subunit SNF5 is essential for hepatocyte differentiation. EMBO J 24: 3313–3324.

    Article  CAS  Google Scholar 

  • Guidi CJ, Veal TM, Jones SN, Imbalzano AN . (2004). Transcriptional compensation for loss of an allele of the Ini1 tumor suppressor. J Biol Chem 279: 4180–4185.

    Article  CAS  Google Scholar 

  • Guidi CJ, Sands AT, Zambrowicz BP, Turner TK, Demers DA, Webster W et al. (2001). Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol Cell Biol 21: 3598–3603.

    Article  CAS  Google Scholar 

  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30: 214–226.

    Article  CAS  Google Scholar 

  • Harms K, Nozell S, Chen X . (2004). The common and distinct target genes of the p53 family transcription factors. Cell Mol Life Sci. 61: 822–842.

    Article  CAS  Google Scholar 

  • Harms KL, Chen X . (2005). The C terminus of p53 family proteins is a cell fate determinant. Mol Cell Bio 25: 2014–2030.

    Article  CAS  Google Scholar 

  • Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR et al. (1998). Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717–728.

    Article  CAS  Google Scholar 

  • Inoki K, Zhu T, Guan KL . (2003a). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115: 577–590.

    Article  CAS  Google Scholar 

  • Inoki K, Li Y, Xu T, Guan KL . (2003b). Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17: 1829–1834.

    Article  CAS  Google Scholar 

  • Isakoff MS, Sansam CG, Tamayo P, Subramanian A, Evans JA, Fillmore CM et al. (2005). Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53 loss in oncogenic transformation. Proc Natl Acad Sci USA 102: 17745–17750.

    Article  CAS  Google Scholar 

  • Kingston RE, Narlikar GJ . (1999). ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev 13: 2339–2352.

    Article  CAS  Google Scholar 

  • Klochendler-Yeivin A, Picarsky E, Yaniv M . (2006). Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complex. Mol Cell Biol 26: 2661–2674.

    Article  CAS  Google Scholar 

  • Klochendler-Yeivin A, Fiette L, Barra J, Muchardt C, Babinet C, Yaniv M . (2000). The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep 1: 500–506.

    Article  CAS  Google Scholar 

  • Ko LJ, Prives C . (1996). p53: puzzle and paradigm. Genes Dev 10: 1054–1072.

    Article  CAS  Google Scholar 

  • Lee D, Kim JW, Seo T, Hwang SG, Choi EJ, Choe J et al. (2002). SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. J Biol Chem 277: 22330–22337.

    Article  CAS  Google Scholar 

  • Liu G, Chen X . (2006). DNA polymerase eta, the product of the xeroderma pigmentosum variant gene and a target of p53, modulates the DNA damage checkpoint and p53 activation. Mol Cell Biol 26: 1398–1413.

    Article  CAS  Google Scholar 

  • Maltzman W, Czyzyk L . (1984). UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 4: 1689–1694.

    Article  CAS  Google Scholar 

  • Martens JA, Winston F . (2003). Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr Opin Genet Dev 13: 136–142.

    Article  CAS  Google Scholar 

  • McKenna ES, Sansam CG, Cho YJ, Greulich H, Evans JA, Thom CS et al. (2008). Loss of the epigenetic tumor suppressor SNF5 leads to cancer without genomic instability. Mol Cell Biol 28: 6223–6233.

    Article  CAS  Google Scholar 

  • Oruetxebarria I, Venturini F, Kekarainen T, Houweling A, Zuijderduijn LM, Mohd-Sarip A et al. (2004). P16INK4a is required for hSNF5 chromatin remodeler-induced cellular senescence in malignant rhabdoid tumor cells. J Biol Chem 279: 3807–3816.

    Article  CAS  Google Scholar 

  • Peterson CL . (1996). Multiple SWItches to turn on chromatin? Curr Opin Genet Dev 6: 171–175.

    Article  CAS  Google Scholar 

  • Roberts CW, Orkin SH . (2004). The SWI/SNF complex—chromatin and cancer. Nat Rev Cancer 4: 133–142.

    Article  CAS  Google Scholar 

  • Roberts CW, Leroux MM, Fleming MD, Orkin SH . (2002). Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2: 415–425.

    Article  CAS  Google Scholar 

  • Roberts CW, Galusha SA, McMenamin ME, Fletcher CD, Orkin SH . (2000). Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci USA 97: 13796–13800.

    Article  CAS  Google Scholar 

  • Scoumanne A, Chen X . (2008). Protein methylation: a new mechanism of p53 tumor suppressor regulation. Histol Histopathol 23: 1143–1149.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scoumanne A, Zhang J, Chen X . (2009). PRMT5 is required for cell-cycle progression and p53 tumor suppressor function. Nucleic Acids Res 37: 4965–4976.

    Article  CAS  Google Scholar 

  • Sevenet N, Sheridan E, Amram D, Schneider P, Handgretinger R, Delattre O . (1999a). Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet 65: 1342–1348.

    Article  CAS  Google Scholar 

  • Sevenet N, Lellouch-Tubiana A, Schofield D, Hoang-Xuan K, Gessler M, Birnbaum D et al. (1999b). Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype-phenotype correlations. Hum Mol Genet 8: 2359–2368.

    Article  CAS  Google Scholar 

  • Sif S, Saurin AJ, Imbalzano AN, Kingston RE . (2001). Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev 15: 603–618.

    Article  CAS  Google Scholar 

  • Sudarsanam P, Iyer VR, Brown PO, Winston F et al. (2000). Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97: 3364–3369.

    Article  CAS  Google Scholar 

  • Takagi M, Absalon MJ, McLure KG, Kastan MB . (2005). Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123: 49–63.

    Article  CAS  Google Scholar 

  • Versteege I, Sévenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R et al. (1998). Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394: 203–206.

    Article  CAS  Google Scholar 

  • Vries RG., Bezrookove V, Zuijderduijn LM, Kia SK, Houweling A, Oruetxebarria I et al. (2005). Cancer-associated mutations in chromatin remodeler hSNF5 promote chromosomal instability by compromising the mitotic checkpoint. Genes Dev 19: 665–670.

    Article  CAS  Google Scholar 

  • Xu Y, Zhang J, Chen X . (2007). The activity of p53 is differentially regulated by Brm- and Brg1-containing SWI/SNF chromatin remodeling complexes. J Biol Chem 282: 37429–37435.

    Article  CAS  Google Scholar 

  • Zhang ZK, Davies KP, Allen J, Zhu L, Pestell RG, Zagzag D et al. (2002). Cell cycle arrest and repression of cyclin D1 transcription by INI1/hSNF5. Mol Cell Biol 22: 5975–5988.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by NIH Grants CA081237, CA076069 and CA102188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Yan, W. & Chen, X. SNF5, a core component of the SWI/SNF complex, is necessary for p53 expression and cell survival, in part through eIF4E. Oncogene 29, 4090–4100 (2010). https://doi.org/10.1038/onc.2010.159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.159

Keywords

This article is cited by

Search

Quick links