Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Coordination of PAD4 and HDAC2 in the regulation of p53-target gene expression

Abstract

Histone Arg methylation and Lys acetylation have been found to cooperatively regulate the expression of p53-target genes. Peptidylarginine deiminase 4 (PAD4) is an enzyme that citrullinates histone arginine and monomethyl-arginine residues thereby regulating histone Arg methylation. We have recently found that PAD4 serves as a p53 corepressor to regulate histone Arg methylation at the p53-target gene p21/WAF1/CIP1 promoter. However, it has not been tested whether histone Arg citrullination coordinates with other histone modifications to repress transcription. Here, we show that histone deacetylase (HDAC2) and PAD4 interact with p53 through distinct domains and simultaneously associate with the p21 promoter to regulate gene expression. After DNA damage, PAD4 and HDAC2 dissociate from several p53-target gene promoters (for example, p21, GADD45, and PUMA) with a concomitant increase in histone Lys acetylation and Arg methylation at these promoters. Furthermore, PAD4 promoter association and histone Arg modifications are regulated by p53 and HDAC activity. In contrast, HDAC2 promoter association and histone Lys acetylation are affected by p53 and PAD4 activity at minor degrees. Importantly, PAD4 inhibitor Cl-amidine and HDAC inhibitor suberoylanilide hydroxamic acid show additive effects in inducing p21, GADD45, and PUMA expression and inhibiting cancer cell growth in a p53-dependent manner. Our results unveil an important crosstalk between histone deacetylation and citrullination, suggesting that a combination of PAD4 and HDAC2 inhibitors as a potential strategy for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • An W, Kim J, Roeder RG . (2004). Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117: 735–748.

    Article  CAS  PubMed  Google Scholar 

  • Arita K, Hashimoto H, Shimizu T, Nakashima K, Yamada M, Sato M . (2004). Structural basis for Ca(2+)-induced activation of human PAD4. Nat Struct Mol Biol 11: 777–783.

    Article  CAS  PubMed  Google Scholar 

  • Baek HJ, Malik S, Qin J, Roeder RG . (2002). Requirement of TRAP/mediator for both activator-independent and activator-dependent transcription in conjunction with TFIID-associated TAF(II)s. Mol Cell Biol 22: 2842–2852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD et al. (2001). Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell 8: 1243–1254.

    CAS  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z et al. (2007). High-resolution profiling of histone methylations in the human genome. Cell 129: 823–837.

    Article  CAS  PubMed  Google Scholar 

  • Bedford MT, Clarke SG . (2009). Protein arginine methylation in mammals: who, what, and why. Mol Cell 33: 1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger SL . (2007). The complex language of chromatin regulation during transcription. Nature 447: 407–412.

    Article  CAS  PubMed  Google Scholar 

  • Causey CP, Thompson PR . (2008). An improved synthesis of haloaceteamidine-based inactivators of protein arginine deiminase 4 (PAD4). Tetrahedron Lett 7: 4383–4385.

    Article  Google Scholar 

  • Chang X, Han J . (2006). Expression of peptidylarginine deiminase type 4 (PAD4) in various tumors. Mol Carcinog 45: 183–196.

    Article  CAS  PubMed  Google Scholar 

  • Chang X, Han J, Pang L, Zhao Y, Yang Y, Shen Z . (2009). Increased PADI4 expression in blood and tissues of patients with malignant tumors. BMC Cancer 9: 40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M et al. (2004). Histone deimination antagonizes arginine methylation. Cell 118: 545–553.

    Article  CAS  PubMed  Google Scholar 

  • Dannenberg JH, David G, Zhong S, van der Torre J, Wong WH, Depinho RA . (2005). mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev 19: 1581–1595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espinosa JM, Emerson BM . (2001). Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell 8: 57–69.

    Article  CAS  PubMed  Google Scholar 

  • Fischle W, Wang Y, Allis CD . (2003). Histone and chromatin cross-talk. Curr Opin Cell Biol 15: 172–183.

    Article  CAS  PubMed  Google Scholar 

  • Gui CY, Ngo L, Xu WS, Richon VM, Marks PA . (2004). Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci USA 101: 1241–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harms KL, Chen X . (2007). Histone deacetylase 2 modulates p53 transcriptional activities through regulation of p53-DNA binding activity. Cancer Res 67: 3145–3152.

    Article  CAS  PubMed  Google Scholar 

  • Harris SL, Levine AJ . (2005). The p53 pathway: positive and negative feedback loops. Oncogene 24: 2899–2908.

    Article  CAS  PubMed  Google Scholar 

  • Ho J, Benchimol S . (2003). Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ 10: 404–408.

    Article  CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD . (2001). Translating the histone code. Science 293: 1074–1080.

    Article  CAS  PubMed  Google Scholar 

  • Kitayner M, Rozenberg H, Kessler N, Rabinovich D, Shaulov L, Haran TE et al. (2006). Structural basis of DNA recognition by p53 tetramers. Mol Cell 22: 741–753.

    Article  CAS  PubMed  Google Scholar 

  • Klose RJ, Zhang Y . (2007). Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 8: 307–318.

    Article  CAS  PubMed  Google Scholar 

  • Kornberg RD, Lorch Y . (1999). Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98: 285–294.

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T . (2007). Chromatin modifications and their function. Cell 128: 693–705.

    Article  CAS  PubMed  Google Scholar 

  • Laptenko O, Prives C . (2006). Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 13: 951–961.

    Article  CAS  PubMed  Google Scholar 

  • Levesque AA, Eastman A . (2007). p53-based cancer therapies: Is defective p53 the Achilles heel of the tumor? Carcinogenesis 28: 13–20.

    Article  CAS  PubMed  Google Scholar 

  • Li B, Carey M, Workman JL . (2007). The role of chromatin during transcription. Cell 128: 707–719.

    Article  CAS  PubMed  Google Scholar 

  • Li P, Yao H, Zhang Z, Li M, Luo Y, Thompson PR et al. (2008). Regulation of p53 target gene expression by peptidylarginine deiminase 4. Mol Cell Biol 28: 4745–4758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ . (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260.

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Su F, Chen D, Shiloh A, Gu W . (2000). Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408: 377–381.

    Article  CAS  PubMed  Google Scholar 

  • Marks PA, Breslow R . (2007). Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25: 84–90.

    Article  CAS  PubMed  Google Scholar 

  • Minucci S, Pelicci PG . (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6: 38–51.

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Downes M, Xie W, Kao HY, Ordentlich P, Tsai CC et al. (2001). Sharp, an inducible cofactor that integrates nuclear receptor repression and activation. Genes Dev 15: 1140–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shilatifard A . (2006). Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75: 243–269.

    Article  CAS  PubMed  Google Scholar 

  • Strahl BD, Allis CD . (2000). The language of covalent histone modifications. Nature 403: 41–45.

    Article  CAS  PubMed  Google Scholar 

  • Turner BM . (2000). Histone acetylation and an epigenetic code. Bioessays 22: 836–845.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L et al. (2004). Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306: 279–283.

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Li P, Venters BJ, Zheng S, Thompson PR, Pugh BF et al. (2008). Histone Arg modifications and p53 regulate the expression of OKL38, a mediator of apoptosis. J Biol Chem 283: 20060–20068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs JC Reese, DS Gilmour, BF Pugh, and S Tan for discussions and helpful comments. Research is supported in part by a PSU start-up fund and NIH Grants R01 CA136856 to YW (PSU) and R01 CA116522 to YW (UC Riverside).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P., Wang, D., Yao, H. et al. Coordination of PAD4 and HDAC2 in the regulation of p53-target gene expression. Oncogene 29, 3153–3162 (2010). https://doi.org/10.1038/onc.2010.51

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.51

Keywords

This article is cited by

Search

Quick links