Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Role of multi-hnRNP nuclear complex in regulation of tumor suppressor ANXA7 in prostate cancer cells

Abstract

Annexin-A7 (ANXA7) tumor suppressor role has been shown in various tumors, and ANXA7 expression has been particularly lost in androgen-resistant prostate cancers. In this study, we studied ANXA7 regulation in normal prostate versus androgen-sensitive and -resistant prostate cancer cells. Deletion mapping analysis showed lowest ANXA7-promoter activities in androgen-sensitive LNCaP prostate cancer cells. Genomatix analysis of ANXA7 promoter identified a cluster of steroid nuclear hormone receptor elements, including V$GREF (V$GRE.02/ARE.02). Gelshift analysis clearly indicated distinct nuclear protein occupancy at this ANXA7-promoter site (−1086/−890) in prostate cancer (LNCaP, DU145, and PC3) versus normal prostate (PrEC) cells. In matrix-assisted laser desorption time-of-flight mass spectrometry-based search for ANXA7 nuclear regulators, we identified several heterogeneous nuclear ribonucleoproteins (hnRNPs) (A1, A2/B1 and K) attached to the steroid-associated ANXA7-promoter site in the androgen-resistant PC3 prostate cancer cells with high ANXA7 gene copy number, but not in PrEC. The hnPNP role in ANXA7 regulation (that was validated by hnRNPA2/B1 antibody interference) resulted in multiple ANXA7 cDNA and protein products in PC3, but not in PrEC. Ingenuity pathways analysis showed plausible molecular paths between ANXA7 and the hnRNP-associated network in prostate cancer progression. Thus, a multi-hnRNP complex can be responsible for aberrant ANXA7 transcription and splicing, thereby affecting ANXA7 expression pattern and tumor suppressor function in prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

ANXA7:

Annexin A7

AR:

androgen receptor

GR:

glucocorticoid receptor

hnRNP:

heterogeneous nuclear ribonucleoprotein

IPA:

ingenuity pathways analysis

MALDI-TOF MS:

matrix-assisted laser desorption time-of-flight mass spectrometry

References

  • Adachi K, Tanaka T, Saito H, Oka T . (1999). Hormonal induction of mouse selenocysteine transfer ribonucleic acid (tRNA) gene transcription-activating factor and its functional importance in the selenocysteine tRNA gene transcription in mouse mammary gland. Endocrinology 140: 618–623.

    Article  CAS  PubMed  Google Scholar 

  • Auboeuf D, Honig A, Berget SM, O′Malley BW . (2002). Coordinate regulation of transcription and splicing by steroid receptor coregulators. Science 298: 416–419.

    Article  CAS  PubMed  Google Scholar 

  • Barboro P, Repaci E, Rubagotti A, Salvi S, Boccardo S, Spina B et al. (2009). Heterogeneous nuclear ribonucleoprotein K: altered pattern of expression associated with diagnosis and prognosis of prostate cancer. Br J Cancer 100: 1608–1616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burd CG, Swanson MS, Görlach M, Dreyfuss G . (1989). Primary structures of the heterogeneous nuclear ribonucleoprotein A2, B1, and C2 proteins: a diversity of RNA binding proteins is generated by small peptide inserts. Proc Natl Acad Sci USA 86: 9788–9792.

    Article  CAS  PubMed  Google Scholar 

  • Caron D, Winstall E, Inaguma Y, Michaud S, Lettre F, Bourassa S et al. (2008). Proteomic characterization of mouse cytosolic and membrane prostate fractions: high levels of free SUMO peptides are androgen-regulated. J Proteome Res 7: 4492–4499.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter B, MacKay C, Alnabulsi A, MacKay M, Telfer C, Melvin WT et al. (2006). The roles of heterogeneous nuclear ribonucleoproteins in tumour development and progression. Biochim Biophys Acta 1765: 85–100.

    CAS  PubMed  Google Scholar 

  • Chen H, Stuart W, Hu B, Nguyen L, Huang G, Clemens TL et al. (2005). Creation of estrogen resistance in vivo by transgenic overexpression of the heterogeneous nuclear ribonucleoprotein-related estrogen response element binding protein. Endocrinology 146: 4266–4273.

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Wang J, Yu G, Liu W, Pearce D . (1997). Androgen and glucocorticoid receptor heterodimer formation. A possible mechanism for mutual inhibition of transcriptional activity. J Biol Chem 272: 14087–14092.

    Article  CAS  PubMed  Google Scholar 

  • Chen TC, Schwartz GG, Burnstein KL, Lokeshwar BL, Holick MF . (2000). The in vitro evaluation of 25-hydroxyvitamin D3 and 19-nor-1alpha,25-dihydroxyvitamin D2 as therapeutic agents for prostate cancer. Clin Cancer Res 6: 901–908.

    CAS  PubMed  Google Scholar 

  • Cooper TA, Wan L, Dreyfuss G . (2009). RNA and disease. Cell 136: 777–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courchet J, Buchet-Poyau K, Potemski A, Brès A, Jariel-Encontre I, Billaud M . (2008). Interaction with 14-3-3 adaptors regulates the sorting of hMex-3B RNA-binding protein to distinct classes of RNA granules. J Biol Chem 283: 32131–32142.

    Article  CAS  PubMed  Google Scholar 

  • Dobi A, Debnam W, Dalgard C, Owusu A, von Agoston D . (2002). Mammalian expression cloning of nucleic acid binding proteins by agarose thin-layer gelshift clone selection. Biotechniques 33: 868–872.

    Article  CAS  PubMed  Google Scholar 

  • Duncan R, Carpenter B, Main LC, Telfer C, Murray GI . (2008). Characterisation and protein expression profiling of annexins in colorectal cancer. Br J Cancer 98: 426–433.

    Article  CAS  PubMed  Google Scholar 

  • Eggert H, Schulz M, Fackelmayer FO, Renkawitz R, Eggert M . (2001). Effects of the heterogeneous nuclear ribonucleoprotein U (hnRNP U/SAF-A) on glucocorticoid-dependent transcription in vivo. J Steroid Biochem Mol Biol 78: 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Enge M, Bao W, Hedström E, Jackson SP, Moumen A, Selivanova G . (2009). MDM2-dependent downregulation of p21 and hnRNP K provides a switch between apoptosis and growth arrest induced by pharmacologically activated p53. Cancer Cell 15: 171–183.

    Article  CAS  PubMed  Google Scholar 

  • Graveley BR . (2009). Alternative splicing: regulation without regulators. Nat Struct Mol Biol 16: 13–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Brown MA, Rothnagel JA, Saunders NA, Smith R . (2005). Roles of heterogeneous nuclear ribonucleoproteins A and B in cell proliferation. J Cell Sci 118: 3173–3183.

    Article  CAS  PubMed  Google Scholar 

  • Heemers HV, Verhoeven G, Swinnen JV . (2006). Androgen activation of the sterol regulatory element-binding protein pathway: current insights. Mol Endocrinol 20: 2265–2277.

    Article  CAS  PubMed  Google Scholar 

  • Hellwinkel OJ, Rogmann JP, Asong LE, Luebke AM, Eichelberg C, Ahyai S et al. (2008). A comprehensive analysis of transcript signatures of the phosphatidylinositol-3 kinase/protein kinase B signal-transduction pathway in prostate cancer. BJU Int 101: 1454–1460.

    Article  CAS  PubMed  Google Scholar 

  • Hilbe W, Dirnhofer S, Greil R, Woll E . (2004). Biomarkers in non-small cell lung cancer prevention. Eur J Cancer Prev 13: 425–436.

    Article  CAS  PubMed  Google Scholar 

  • Juven-Gershon T, Hsu JY, Theisen JW, Kadonaga JT . (2008). The RNA polymerase II core promoter—the gateway to transcription. Curr Opin Cell Biol 20: 253–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang HS, Angers M, Beak JY, Wu X, Gimble JM, Wada T et al. (2007). Gene expression profiling reveals a regulatory role for ROR alpha and ROR gamma in phase I and phase II metabolism. Physiol Genomics 31: 281–294.

    Article  CAS  PubMed  Google Scholar 

  • Karagianni N, Tsawdaroglou N . (1994). The c-fos serum response element (SRE) confers negative response to glucocorticoids. Oncogene 9: 2327–2334.

    CAS  PubMed  Google Scholar 

  • Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA et al. (2005). High-resolution map of active promoters in the human genome. Nature 436: 876–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura E, Abe K, Suzuki K, Sorimachi H . (2003). Heterogeneous nuclear ribonucleoprotein K interacts with and is proteolyzed by calpain in vivo. Biosci Biotechnol Biochem 67: 1786–1796.

    Article  CAS  PubMed  Google Scholar 

  • Lee BJ, Cansizoglu AE, Süel KE, Louis TH, Zhang Z, Chook YM . (2006). Rules for nuclear localization sequence recognition by karyopherin beta 2. Cell 126: 543–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Evdokimov E, Shen RF, Chao CC, Tekle E, Wang T et al. (2004). Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Proc Natl Acad Sci USA 101: 8551–8556.

    Article  CAS  PubMed  Google Scholar 

  • Magendzo K, Shirvan A, Cultraro C, Srivastava M, Pollard HB, Burns AL . (1991). Alternative splicing of human synexin mRNA in brain, cardiac, and skeletal muscle alters the unique N-terminal domain. J Biol Chem 266: 3228–3232.

    CAS  PubMed  Google Scholar 

  • Mikula M, Dzwonek A, Karczmarski J, Rubel T, Dadlez M, Wyrwicz LS et al. (2006). Landscape of the hnRNP K protein-protein interactome. Proteomics 6: 2395–2406.

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay NK, Kim J, Cinar B, Ramachandran A, Hager MH, Di Vizio D et al. (2009). Heterogeneous nuclear ribonucleoprotein K is a novel regulator of androgen receptor translation. Cancer Res 69: 2210–2218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myslinski E, Gérard MA, Krol A, Carbon P . (2006). A genome scale location analysis of human Staf/ZNF143-binding sites suggests a widespread role for human Staf/ZNF143 in mammalian promoters. J Biol Chem 281: 39953–39962.

    Article  CAS  PubMed  Google Scholar 

  • Nakielny S, Dreyfuss G . (1999). Transport of proteins and RNAs in and out of the nucleus. Cell 99: 677–690.

    Article  CAS  PubMed  Google Scholar 

  • Patry C, Bouchard L, Labrecque P, Gendron D, Lemieux B, Toutant J et al. (2003). Small interfering RNA-mediated reduction in heterogeneous nuclear ribonucleoparticule A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines. Cancer Res 63: 7679–7688.

    CAS  PubMed  Google Scholar 

  • Pollard HB, Caohuy H, Minton AP, Srivastava M . (1998). Synexin (annexin VII) hypothesis for Ca2+/GTP-regulated exocytosis. Adv Pharmacol 42: 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Reed R, Hurt E . (2002). A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108: 523–531.

    Article  CAS  PubMed  Google Scholar 

  • Rizzo G, Fiorucci S . (2006). PPARs and other nuclear receptors in inflammation. Curr Opin Pharmacol 6: 421–427.

    Article  CAS  PubMed  Google Scholar 

  • Rozanov DV, Savinov AY, Williams R, Liu K, Golubkov VS, Krajewski S et al. (2008). Molecular signature of MT1-MMP: transactivation of the downstream universal gene network in cancer. Cancer Res 68: 4086–4096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi M, Murata H, Sonegawa H, Sakaguchi Y, Futami J, Kitazoe M et al. (2007). Truncation of annexin A1 is a regulatory lever for linking epidermal growth factor signaling with cytosolic phospholipase A2 in normal and malignant squamous epithelial cells. J Biol Chem 282: 35679–35686.

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Ko S, Kim S, Echchgadda I, Oh TS, Song CS et al. (2008). Loss of androgen receptor in aging and oxidative stress through Myb protooncoprotein-regulated reciprocal chromatin dynamics of p53 and poly(ADP-ribose) polymerase PARP-1. J Biol Chem 283: 36474–36485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Manley JL . (2007). A complex signaling pathway regulates SRp38 phosphorylation and pre-mRNA splicing in response to heat shock. Mol Cell 28: 79–90.

    Article  CAS  PubMed  Google Scholar 

  • Shirvan A, Srivastava M, Wang MG, Cultraro C, Magendzo K, McBride OW et al. (1994). Divergent structure of the human synexin (annexin VII) gene and assignment to chromosome 10. Biochemistry 33: 6888–6901.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava M, Atwater I, Glasman M, Leighton X, Goping G, Caohuy H et al. (1999). Defects in inositol 1,4,5-trisphosphate receptor expression, Ca(2+) signaling, and insulin secretion in the anx7(+/−) knockout mouse. Proc Natl Acad Sci USA 96: 13783–13788.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava M, Montagna C, Leighton X, Glasman M, Naga S, Eidelman O et al. (2003). Haploinsufficiency of Anx7 tumor suppressor gene and consequent genomic instability promotes tumorigenesis in the Anx7(+/−) mouse. Proc Natl Acad Sci USA 100: 14287–14292.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava M, Pollard HB . (2000). Low in vivo levels of human anx7 (annexin VII) gene expression are due to endogenous inhibitory promoter sequences. Cell Biol Int 24: 475–481.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava M, Torosyan Y, Raffeld M, Eidelman O, Pollard HB, Bubendorf L . (2007). ANXA7 expression represents hormone-relevant tumor suppression in different cancers. Int J Cancer 121: 2628–2636.

    Article  CAS  PubMed  Google Scholar 

  • Tokusumi Y, Ma Y, Song X, Jacobson RH, Takada S . (2007). The new core promoter element XCPE1 (X Core Promoter Element 1) directs activator-, mediator-, and TATA-binding protein-dependent but TFIID-independent RNA polymerase II transcription from TATA-less promoters. Mol Cell Biol 27: 1844–1858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torosyan Y, Dobi A, Naga S, Mezhevaya K, Glasman M, Norris C et al. (2006). Distinct effects of annexin A7 and p53 on arachidonate lipoxygenation in prostate cancer cells involve 5-lipoxygenase transcription. Cancer Res 66: 9609–9616.

    Article  CAS  PubMed  Google Scholar 

  • Torosyan Y, Simakova O, Naga S, Mezhevaya K, Leighton X, Diaz J et al. (2009). Annexin-A7 protects normal prostate cells and induces distinct patterns of RB-associated cytotoxicity in androgen-sensitive and -resistant prostate cancer cells. Int J Cancer 125: 2528–2539.

    Article  CAS  PubMed  Google Scholar 

  • Wolf M, Mousses S, Hautaniemi S, Karhu R, Huusko P, Allinen M et al. (2004). High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microarrays: impact of copy number on gene expression. Neoplasia 6: 240–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yemelyanov A, Czwornog J, Chebotaev D, Karseladze A, Kulevitch E, Yang X et al. (2007). Tumor suppressor activity of glucocorticoid receptor in the prostate. Oncogene 26: 1885–1896.

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Cai C, Omwancha J, Chen SY, Baslan T, Shemshedini L . (2006). SUMO-3 enhances androgen receptor transcriptional activity through a sumoylation-independent mechanism in prostate cancer cells. J Biol Chem 281: 4002–4012.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Gideon Dreyfuss (University of Pennsylvania School of Medicine) for providing hnRNPA2/B1 antibody. This work was supported by grants funded by the US Department of Defense (DoD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Srivastava.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torosyan, Y., Dobi, A., Glasman, M. et al. Role of multi-hnRNP nuclear complex in regulation of tumor suppressor ANXA7 in prostate cancer cells. Oncogene 29, 2457–2466 (2010). https://doi.org/10.1038/onc.2010.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.2

Keywords

This article is cited by

Search

Quick links