Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Functional inhibition of PI3K by the βGBP molecule suppresses Ras–MAPK signalling to block cell proliferation

Abstract

The mechanisms of signal transduction from cell surface receptors to the interior of the cell are fundamental to the understanding of the role that positive and negative growth factors play in cell physiology and in human diseases. Here, we show that a functional link between phosphatidylinositol-3-OH kinase (PI3K) and Ras is suppressed by the β-galactoside binding protein (βGBP) molecule, a cytokine and a negative cell-cycle regulator. Ras–mitogen-activated protein kinase (MAPK) signalling is blocked by βGBP owing to its ability to inhibit the p110 catalytic subunit of PI3K, whose basal activity is required for Ras activation. Functional inhibition of p110 by βGBP results in downregulation of PI3K activity, suppression of Ras-GTP loading, consequent loss of MAPK activation and block of cell proliferation. This study sheds light on the molecular mechanisms whereby βGBP can control cell proliferation and, by extension, may potentially control tumorigenesis by controlling PI3K.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aurias A, Rimbaut C, Buffe D, Zucker JM, Mazabraud A . (1984). Translocation involving chromosome 22 in Ewing's sarcoma. A cytogenetic study of four fresh tumours. Cancer Genet Cytogenet 12: 21–25.

    Article  CAS  Google Scholar 

  • Baldini A, Gress T, Patel K, Muresu R, Chiariotti L, Williamson P et al. (1993). Mapping on human and mouse chromosomes of the gene for the β galactoside binding protein, an autocrine negative growth factor. Genomics 15: 216–218.

    Article  CAS  Google Scholar 

  • Blaser C, Kaufman M, Muller C, Zimmermann C, Wells V, Mallucci L et al. (1998). β-galactoside binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur J Immunol 28: 2311–2319.

    Article  CAS  Google Scholar 

  • Bridge JA, Borek DA, Neff JR, Huntrakoon M . (1990). Chromosomal abnormalities in clear cell carcinoma. Implications for histogenesis. Am J Clin Pathol 93: 26–31.

    Article  CAS  Google Scholar 

  • Cantley LC . (2002). Phosphoinositide-3-kinase pathway. Science 296: 1655–1657.

    Article  CAS  Google Scholar 

  • Chiariotti L, Wells V, Bruni CB, Mallucci L . (1991). Structure and expression of the negative growth factor mouse β-galactoside binding protein gene. Biochim Biophys Acta 1089: 54–60.

    Article  CAS  Google Scholar 

  • Downward J . (2003). Targeting Ras signaling pathways in cancer therapy. Nat Rev 3: 11–22.

    Article  CAS  Google Scholar 

  • Finney RE, Robbins SM, Bishop JM . (1993). Association of pRas and pRaf-1 in a complex correlates with activation of signal transduction pathways. Curr Biol 3: 805–812.

    Article  CAS  Google Scholar 

  • Garcia Z, Kumar A, Marques M, Cortes I, Carrera AC . (2006). Phosphoinositide-3-kinase controls early and late events in mammalian cell division. EMBO J 25: 655–661.

    Article  CAS  Google Scholar 

  • Hawes BE, Luttrell LM, van Biesen T, Lefkowitz RJ . (1996). Phosphatidylinositol 3-kinase is an early intermediate in the Gβγ-mediated mitogen-activated protein kinase signalling pathway. J Biol Chem 271: 12133–12136.

    Article  CAS  Google Scholar 

  • Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB . (2005). Links exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4: 988–1004.

    Article  CAS  Google Scholar 

  • Hirabayashi J, Akayi H, Soma G, Kasai K . (1989). Production and purification of a recombinant human 14 kDa β-galactoside-binding lectin. FEBS Lett 250: 161–165.

    Article  CAS  Google Scholar 

  • Kharitonevkov A, Chen Z, Sures I, Wang H, Schilling J, Ullrich A . (1997). A family of proteins that inhibits signalling through tyrosine kinase receptors. Nature 386: 181–186.

    Article  Google Scholar 

  • Koch WJ, Hawes BE, Allen LF, Lefkowitz RJ . (1994). Direct evidence that Gi-coupled receptor stimulation of mitogen-activated protein kinase is mediated by Gβγ activation of p21ras. Proc Natl Acad Sci USA 91: 12706–12710.

    Article  CAS  Google Scholar 

  • Leopoldt D, Hanck T, Exner T, Maier U, Wetzker R, Nurnberg B . (1998). Gβγ stimulates phosphatidylinositol 3-kinase by direct interaction with two domains of the catalytic p110 subunit. J Biol Chem 273: 7024–7029.

    Article  CAS  Google Scholar 

  • Mallucci L, Wells V, Danikas A, Davies D . (2003). Turning cell cycle controller genes into cancer drugs. A role for an antiproliferative cytokine (βGBP). Biochem Pharmacol 66: 1563–1569.

    Article  CAS  Google Scholar 

  • Mitin N, Rossmann KL, Der CJ . (2005). Signaling interplay in Ras superfamily function. Curr Biol 15: R563–R574.

    Article  CAS  Google Scholar 

  • Panayotou G, Bax B, Gout I, Federwisch M, Wroblowski B, Dhand R et al. (1992). Interaction of the p85 subunit of PI3-kinase and the N-terminal SH2 domain with a PDGF receptor phosphorylation site: structural features and analysis of conformational changes. EMBO J 11: 4261–4272.

    Article  CAS  Google Scholar 

  • Powis G, Boujouklian R, Berggren MM, Gallegos A, Abraham R., Ashendel C . (1994). Wortmannin, a potent selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res 59: 2419–2423.

    Google Scholar 

  • Ravatn R, Wells V, Nelson L, Vettori D, Mallucci L, Chin KV . (2005). Circumventing multidrug resistance in cancer by β-galactoside binding protein, an antiproliferative cytokine. Cancer Res 65: 1631–1634.

    Article  CAS  Google Scholar 

  • Rey JA, Bello MJ, de Campos JM, Vaquero J, Kusak ME, Sarasa JL et al. (1993). Abnormalities of chromosome 22 in human brain tumors determined by combined cytogenetic and molecular genetic approaches. Cancer Genet Cytogenet 66: 1–10.

    Article  CAS  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry M et al. (1994). Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370: 527–532.

    Article  CAS  Google Scholar 

  • Schonwasser OC, Marais RM, Marshall CJ, Parker P . (1998). Activation of mitogen-activated protein kinase/extracellular signal regulated kinase pathway by conventional, novel and atypical protein kinase C isotypes. Mol Cell Biol 18: 790–798.

    Article  CAS  Google Scholar 

  • Suire S, Coadwell J, Ferguson T, Davidson K, Hawkins P, Stephens L . (2005). p84, a new βγ-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110γ. Curr Biol 15: 566–570.

    Article  CAS  Google Scholar 

  • Turc-Carel C, Dal Cin P, Rao U, Karakousis C, Sandberg AA . (1998). Recurrent breakpoints at 9q31 and 22q12.2 in extraskeletal myzoid chondrosarcoma. Cancer Genet Cytogenet 30: 145–150.

    Article  Google Scholar 

  • Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll P . (2001). Synthesis and function of 3- phosphorylated inositol lipids. Annu Rev Biochem 70: 535–602.

    Article  CAS  Google Scholar 

  • Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD . (1997). Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biol Sci 22: 267–272.

    Article  CAS  Google Scholar 

  • Vivanco I, Sawyers CL . (2002). The phosphatidylinositol 3-kinase–Akt pathway in human cancer. Nat Rev 2: 489–501.

    Article  CAS  Google Scholar 

  • Vlahos CJ, Matter WT, Hui KY, Brown F . (1994). A specific inhibitor of phosphatidylinositol-3-kinase,2-(morpholinyl)-8-4H-benzopyran-4-one (LY294002). J Biol Chem 269: 5241–5248.

    CAS  Google Scholar 

  • Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP et al. (2000). Structural determination of phosphoinositol-3-kinase by wortmannin and LY294002, quercetin, myricetin and staurosporine. Mol Cell 6: 909–919.

    Article  CAS  Google Scholar 

  • Wells V, Mallucci L . (1991). Identification of an autocrine negative growth factor: mouse-β-galactoside binding protein is a cytostatic factor and cell growth regulator. Cell 64: 91–97.

    Article  CAS  Google Scholar 

  • Wells V, Mallucci L . (1992). Molecular expression of the negative growth factor murine-β- galactoside binding protein (mGBP). Biochim Biophys Acta 1121: 239–244.

    Article  CAS  Google Scholar 

  • Wennstrom S, Downward J . (1999). Role of phosphoinositide 3-kinase in activation of Ras and mitogen-activated protein kinase by epidermal growth factor. Mol Cell Biol 19: 4279–4288.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jun Hirabayashi for H-Gal-1 cDNA in pET21 plasmid, Len Stephens for the gift of antibodies to p110γ, Beth Drees and Paul Neilsen for cooperation in developing the PI3K assay, Pat Warne for technical assistance, Kate Kirwan for art work and John Stirling for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Mallucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wells, V., Downward, J. & Mallucci, L. Functional inhibition of PI3K by the βGBP molecule suppresses Ras–MAPK signalling to block cell proliferation. Oncogene 26, 7709–7714 (2007). https://doi.org/10.1038/sj.onc.1210580

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210580

Keywords

This article is cited by

Search

Quick links