Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Hematopoietic cytokines enhance Chk1-dependent G2/M checkpoint activation by etoposide through the Akt/GSK3 pathway to inhibit apoptosis

Abstract

Hematopoietic cytokines play crucial roles in regulation of cell cycle progression and apoptosis of hematopoietic cells. However, the effects of cytokines on cellular responses to chemotherapeutic agents and the mechanisms involved have remained elusive. Here we report that erythropoietin or IL-3 promotes G2/M arrest and prevents apoptosis induced by the topoisomerase II inhibitor etoposide in murine hematopoietic 32D cells and human leukemic UT7 cells. Erythropoietin or IL-3 significantly enhanced etoposide-induced activation-specific phosphorylation of Chk1, a checkpoint kinase that inhibits Cdc2 activation by Cdc25 phosphatases, and led to the inhibition of Cdc2 kinase activity with the persistent inhibitory phosphorylation on Tyr15. The inhibitory Cdc2 phosphorylation and G2/M block by etoposide were enhanced or inhibited by overexpression of Chk1 or by the specific Chk1 inhibitor SB218078, respectively. The G2/M arrest induced by etoposide was also enhanced or inhibited by expression of a constitutively activated or dominant-negative Akt mutant, respectively. Furthermore, SB216763 or LiCl, a specific inhibitor for the GSK3 kinase inhibited by Akt, enhanced the Chk1 phosphorylation and G2/M arrest by etoposide. These results indicate that hematopoietic cytokines protect etoposide-treated cells from DNA damage-induced apoptosis by promoting, through the PI3K/Akt/GSK3 signaling pathway, G2/M checkpoint that is dependent on Chk1-mediated inhibition of Cdc2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Arai A, Kanda E and Miura O . (2002). Oncogene, 21, 2641–2651.

  • Bartek J and Lukas J . (2003). Cancer Cell, 3, 421–429.

  • Bijur GN and Jope RS . (2001). J. Biol. Chem., 276, 37436–37442.

  • Brazil DP, Yang ZZ and Hemmings BA . (2004). Trends Biochem. Sci., 29, 233–242.

  • Bulavin DV, Amundson SA and Fornace AJ . (2002). Curr. Opin. Genet. Dev., 12, 92–97.

  • Canman CE, Gilmer TM, Coutts SB and Kastan MB . (1995). Genes Dev., 9, 600–611.

  • Cheong JW, Eom JI, Maeng HY, Lee ST, Hahn JS, Ko YW and Min YH . (2003). Leuk. Res., 27, 1159–1162.

  • Coghlan MP, Culbert AA, Cross DA, Corcoran SL, Yates JW, Pearce NJ, Rausch OL, Murphy GJ, Carter PS, Roxbee Cox L, Mills D, Brown MJ, Haigh D, Ward RW, Smith DG, Murray KJ, Reith AD and Holder JC . (2000). Chem. Biol., 7, 793–803.

  • Collins MK, Marvel J, Malde P and Lopez-Rivas A . (1992). J. Exp. Med., 176, 1043–1051.

  • Eapen AK, Henry MK, Quelle DE and Quelle FW . (2001). Mol. Cell. Biol., 21, 6113–6121.

  • Eldar-Finkelman H . (2002). Trends Mol. Med., 8, 126–132.

  • Henry MK, Lynch JT, Eapen AK and Quelle FW . (2001). Blood, 98, 834–841.

  • Ihle JN . (1995). Nature, 377, 591–594.

  • Jackson JR, Gilmartin A, Imburgia C, Winkler JD, Marshall LA and Roshak A . (2000). Cancer Res., 60, 566–572.

  • Jope RS and Johnson GV . (2004). Trends Biochem. Sci., 29, 95–102.

  • King FW, Skeen J, Hay N and Shtivelman E . (2004). Cell Cycle, 3, 634–637.

  • Komatsu N, Nakauchi H, Miwa A, Ishihara T, Eguchi M, Moroi M, Okada M, Sato Y, Wada H, Yawata Y, Suda T and Miura Y . (1991). Cancer Res., 51, 341–348.

  • Kubota Y, Ohnishi H, Kitanaka A, Ishida T and Tanaka T . (2004). Leukemia, 18, 1438–1440.

  • Lowenberg B, van Putten W, Theobald M, Gmur J, Verdonck L, Sonneveld P, Fey M, Schouten H, de Greef G, Ferrant A, Kovacsovics T, Gratwohl A, Daenen S, Huijgens P and Boogaerts M . (2003). N. Engl. J. Med., 349, 743–752.

  • Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK, Lee ST, Lee MH, Hahn JS and Ko YW . (2003). Leukemia, 17, 995–997.

  • Miura O, Cleveland JL and Ihle JN . (1993). Mol. Cell. Biol., 13, 1788–1795.

  • Miura O, Nakamura N, Ihle JN and Aoki N . (1994). J. Biol. Chem., 269, 614–620.

  • Nimbalkar D, Henry MK and Quelle FW . (2003). Cancer Res., 63, 1034–1039.

  • Nyberg KA, Michelson RJ, Putnam CW and Weinert TA . (2002). Annu. Rev. Genet., 36, 617–656.

  • Phiel CJ and Klein PS . (2001). Annu. Rev. Pharmacol. Toxicol., 41, 789–813.

  • Quelle FW, Wang J, Feng J, Wang D, Cleveland JL, Ihle JN and Zambetti GP . (1998). Genes Dev., 12, 1099–1107.

  • Sancar A, Lindsey-Boltz LA, Unsal-Kaccmaz K and Linn S . (2004). Annu. Rev. Biochem., 73, 39–85.

  • Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM and Abraham RT . (1999). Cancer Res., 59, 4375–4382.

  • Shtivelman E, Sussman J and Stokoe D . (2002). Curr. Biol., 12, 919–924.

  • Somervaille TC, Linch DC and Khwaja A . (2001). Blood, 98, 1374–1381.

  • Sramkoski RM, Wormsley SW, Bolton WE, Crumpler DC and Jacobberger JW . (1999). Cytometry, 35, 274–283.

  • Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE and McCubrey JA . (2004). Leukemia, 18, 189–218.

  • Sugimoto K, Toyoshima H, Sakai R, Miyagawa K, Hagiwara K, Ishikawa F, Takaku F, Yazaki Y and Hirai H . (1992). Blood, 79, 2378–2383.

  • Watcharasit P, Bijur GN, Song L, Zhu J, Chen X and Jope RS . (2003). J. Biol. Chem., 278, 48872–48879.

  • Watcharasit P, Bijur GN, Zmijewski JW, Song L, Zmijewska A, Chen X, Johnson GV and Jope RS . (2002). Proc. Natl. Acad. Sci. USA, 99, 7951–7955.

  • Xu Q, Simpson SE, Scialla TJ, Bagg A and Carroll M . (2003). Blood, 102, 972–980.

  • Zhao S, Konopleva M, Cabreira-Hansen M, Xie Z, Hu W, Milella M, Estrov Z, Mills GB and Andreeff M . (2004). Leukemia, 18, 267–275.

  • Zhou BB and Bartek J . (2004). Nat. Rev. Cancer, 4, 216–225.

Download references

Acknowledgements

We thank Drs Norio Komatsu and Jann N Sarkaria for the generous gifts of experimental materials. This work was supported in part by grants from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Miura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, ZH., Kurosu, T., Yamaguchi, M. et al. Hematopoietic cytokines enhance Chk1-dependent G2/M checkpoint activation by etoposide through the Akt/GSK3 pathway to inhibit apoptosis. Oncogene 24, 1973–1981 (2005). https://doi.org/10.1038/sj.onc.1208408

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208408

Keywords

This article is cited by

Search

Quick links