Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the N6-adenine DNA methyltransferase M•TaqI in complex with DNA and a cofactor analog

Abstract

The 2.0 Å crystal structure of the N6-adenine DNA methyltransferase M•TaqI in complex with specific DNA and a nonreactive cofactor analog reveals a previously unrecognized stabilization of the extrahelical target base. To catalyze the transfer of the methyl group from the cofactor S-adenosyl-l-methionine to the 6-amino group of adenine within the double-stranded DNA sequence 5′-TCGA-3′, the target nucleoside is rotated out of the DNA helix. Stabilization of the extrahelical conformation is achieved by DNA compression perpendicular to the DNA helix axis at the target base pair position and relocation of the partner base thymine in an interstrand π-stacked position, where it would sterically overlap with an innerhelical target adenine. The extrahelical target adenine is specifically recognized in the active site, and the 6-amino group of adenine donates two hydrogen bonds to Asn 105 and Pro 106, which both belong to the conserved catalytic motif IV of N6-adenine DNA methyltransferases. These hydrogen bonds appear to increase the partial negative charge of the N6 atom of adenine and activate it for direct nucleophilic attack on the methyl group of the cofactor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional structure of the ternary complex of M•TaqI.
Figure 2: Schematic representation of hydrogen bonds and salt bridges between M•TaqI and the DNA substrate.
Figure 3: Stereo view of the active site of M•TaqI.
Figure 4: Structural comparison between the presented ternary complex and the binary complex of M•TaqI15 within the active site.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Cheng, X. Annu. Rev. Biophys. Biomol. Struct. 24, 293–318 (1995).

    Article  CAS  Google Scholar 

  2. Jost, J.P. & Saluz, H.P. DNA methylation: molecular biology and biological significance (Birkhäuser Verlag, Basel; 1993).

    Book  Google Scholar 

  3. Wu, J.C. & Santi, D.V. J. Biol. Chem. 262, 4778–4786 (1987).

    CAS  PubMed  Google Scholar 

  4. Klimasauskas, S., Kumar, S., Roberts, R.J. & Cheng, X. Cell 76, 357–369 (1994).

    Article  CAS  Google Scholar 

  5. Reinisch, K.M., Chen, L., Verdine, G.L. & Lipscomb, W.N. Cell 82, 143–153 (1995).

    Article  CAS  Google Scholar 

  6. Malone, T., Blumenthal, R.M. & Cheng, X. J. Mol. Biol. 253, 618–632 (1995).

    Article  CAS  Google Scholar 

  7. Pósfai, J., Bhagwat, A.S., Pósfai, G. & Roberts, R.J. Nucleic Acids Res. 17, 2421–2435 (1989).

    Article  Google Scholar 

  8. Pogolotti, A.L., Ono, A., Subramaniam, R. & Santi, D.V. J. Biol. Chem. 263, 7461–7464 (1988).

    CAS  PubMed  Google Scholar 

  9. Ho, D.K., Wu, J.C., Santi, D.V. & Floss, H.G. Arch. Biochem. Biophys. 284, 264–269 (1991).

    Article  CAS  Google Scholar 

  10. Holz, B. et al. J. Biol. Chem. 274, 15066–15072 (1999).

    Article  CAS  Google Scholar 

  11. Holz, B. & Weinhold, E. In Bioorganic chemistry: highlights and new aspects (eds, Diederichsen, U., Lindhorst, T.K., Westermann B. & Wessjohann, L.) 337–345 (Wiley-VCH, Weinheim; 1999).

    Google Scholar 

  12. Labahn, J. et al. Proc. Natl. Acad. Sci. USA 91, 10957–10961 (1994).

    Article  CAS  Google Scholar 

  13. Tran, P.H., Korszun, Z.R., Cerritelli, S., Springhorn, S.S. & Lacks, S.A. Structure 6, 1563–1575 (1998).

    Article  CAS  Google Scholar 

  14. Gong, W., O'Gara, M., Blumenthal, R.M. & Cheng, X. Nucleic Acids Res. 25, 2702–2715 (1997).

    Article  CAS  Google Scholar 

  15. Schluckebier, G., Kozak, M., Bleimling, N., Weinhold, E. & Saenger, W. J. Mol. Biol. 265, 56–67 (1997).

    Article  CAS  Google Scholar 

  16. Vassylyev, D.G. et al. Cell 83, 773–782 (1995).

    Article  CAS  Google Scholar 

  17. Slupphaug, G. et al. Nature 384, 87–92 (1996).

    Article  CAS  Google Scholar 

  18. Barrett, T.E. et al. Cell 92, 117–129 (1998).

    Article  CAS  Google Scholar 

  19. Lau, A.Y., Schärer, O.D., Samson, L., Verdine, G.L. & Ellenberger, T. Cell 95, 249–258 (1998).

    Article  CAS  Google Scholar 

  20. Hosfield, D.J., Guan, Y., Haas, B.J., Cunningham, R.P. & Tainer, J.A. Cell 98, 397–408 (1999).

    Article  CAS  Google Scholar 

  21. Bruner, S.D., Norman, D.P.G. & Verdine, G.L. Nature 403, 859–866 (2000).

    Article  CAS  Google Scholar 

  22. Cheng, X., Kumar, S., Posfai, J., Pflugrath, J.W. & Roberts, R.J. Cell 74, 299–307 (1993).

    Article  CAS  Google Scholar 

  23. Schluckebier, G., O'Gara, M., Saenger, W. & Cheng, X. J. Mol. Biol. 247, 16–20 (1995).

    Article  CAS  Google Scholar 

  24. Kettani, A., Guéron, M. & Leroy, J.-L. J. Am. Chem. Soc. 119, 1108–1115 (1997).

    Article  Google Scholar 

  25. Schluckebier, G., Labahn, J., Granzin, J. & Saenger, W. Biol. Chem. 379, 389–400 (1998).

    CAS  PubMed  Google Scholar 

  26. Arnett, E.M. Progr. Phys. Org. Chem. 1, 223–403 (1963).

    CAS  Google Scholar 

  27. Holz, B., Klimasauskas, S., Serva, S. & Weinhold, E. Nucleic Acids Res. 26, 1076–1083 (1998).

    Article  CAS  Google Scholar 

  28. Kabsch, W. J. Appl. Cryst. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  29. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  30. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  31. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank N. Bleimling for producing M•TaqI, S. Milardovic′ for help during initial crystallization experiments and M. Weyand for help with the refinement and graphical presentation. This work was supported in part by a grant from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmar Weinhold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goedecke, K., Pignot, M., Goody, R. et al. Structure of the N6-adenine DNA methyltransferase M•TaqI in complex with DNA and a cofactor analog. Nat Struct Mol Biol 8, 121–125 (2001). https://doi.org/10.1038/84104

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing