Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of an inactivated mutant mammalian voltage-gated K+ channel

Abstract

C-type inactivation underlies important roles played by voltage-gated K+ (Kv) channels. Functional studies have provided strong evidence that a common underlying cause of this type of inactivation is an alteration near the extracellular end of the channel's ion-selectivity filter. Unlike N-type inactivation, which is known to reflect occlusion of the channel's intracellular end, the structural mechanism of C-type inactivation remains controversial and may have many detailed variations. Here we report that in voltage-gated Shaker K+ channels lacking N-type inactivation, a mutation enhancing inactivation disrupts the outermost K+ site in the selectivity filter. Furthermore, in a crystal structure of the Kv1.2-2.1 chimeric channel bearing the same mutation, the outermost K+ site, which is formed by eight carbonyl-oxygen atoms, appears to be slightly too small to readily accommodate a K+ ion and in fact exhibits little ion density; this structural finding is consistent with the functional hallmark of C-type inactivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The V478W mutation enhances C-type inactivation in Shaker channels.
Figure 2: Structure and electron density map of the region around residue 406 in mutant molecule I.
Figure 3: Structure and electron density of the selectivity filter in mutant molecule I.
Figure 4: One-dimensional electron density profiles (electrons/Å3) sampled from FoFc maps along the central axis of the filter of V406W-mutant molecule I.
Figure 5: Electron density profiles within the selectivity filter of V406W-mutant molecule I.
Figure 6: Structure and density of the V406W-mutant molecule II.
Figure 7: Crystal contacts between the turret region of the α subunit of molecule II and the β subunit of molecule I.
Figure 8: Electron density profiles within KcsA's selectivity filter.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Hodgkin, A.L. & Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  2. Armstrong, C.M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol. 58, 413–437 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoshi, T., Zagotta, W.N. & Aldrich, R.W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Zagotta, W.N., Hoshi, T. & Aldrich, R.W. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250, 568–571 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Hoshi, T., Zagotta, W.N. & Aldrich, R.W. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7, 547–556 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Rettig, J. et al. Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit. Nature 369, 289–294 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Choi, K.L., Mossman, C., Aubé, J. & Yellen, G. The internal quaternary ammonium receptor site of Shaker potassium channels. Neuron 10, 533–541 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Liu, Y., Holmgren, M., Jurman, M.E. & Yellen, G. Gated access to the pore of a voltage-dependent K+ channel. Neuron 19, 175–184 (1997).

    Article  PubMed  Google Scholar 

  9. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. López-Barneo, J., Hoshi, T., Heinemann, S.H. & Aldrich, R.W. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels 1, 61–71 (1993).

    PubMed  Google Scholar 

  11. Yang, Y., Yan, Y. & Sigworth, F.J. How does the W434F mutation block current in Shaker potassium channels? J. Gen. Physiol. 109, 779–789 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yellen, G., Sodickson, D., Chen, T.Y. & Jurman, M.E. An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys. J. 66, 1068–1075 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Long, S.B., Campbell, E.B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Long, S.B., Tao, X., Campbell, E.B. & MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Hoshi, T. & Armstrong, C.M. C-type inactivation of voltage-gated K+ channels: pore constriction or dilation? J. Gen. Physiol. 141, 151–160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Armstrong, C.M. & Hoshi, T. K+ channel gating: C-type inactivation is enhanced by calcium or lanthanum outside. J. Gen. Physiol. 144, 221–230 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Monod, J., Wyman, J. & Changeux, J.P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  PubMed  Google Scholar 

  18. Perozo, E., MacKinnon, R., Bezanilla, F. & Stefani, E. Gating currents from a nonconducting mutant reveal open-closed conformations in Shaker K+ channels. Neuron 11, 353–358 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Hackos, D.H., Chang, T.H. & Swartz, K.J. Scanning the intracellular S6 activation gate in the shaker K+ channel. J. Gen. Physiol. 119, 521–532 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kitaguchi, T., Sukhareva, M. & Swartz, K.J. Stabilizing the closed S6 gate in the Shaker Kv channel through modification of a hydrophobic seal. J. Gen. Physiol. 124, 319–332 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Armstrong, C.M. & Bezanilla, F. Currents related to movement of the gating particles of the sodium channels. Nature 242, 459–461 (1973).

    Article  CAS  PubMed  Google Scholar 

  22. Garcia, M.L., Garcia-Calvo, M., Hidalgo, P., Lee, A. & MacKinnon, R. Purification and characterization of three inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var. hebraeus venom. Biochemistry 33, 6834–6839 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. MacKinnon, R. & Miller, C. Mechanism of charybdotoxin block of the high-conductance, Ca2+-activated K+ channel. J. Gen. Physiol. 91, 335–349 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Park, C.S. & Miller, C. Interaction of charybdotoxin with permeant ions inside the pore of a K+ channel. Neuron 9, 307–313 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Hidalgo, P. & MacKinnon, R. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science 268, 307–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Banerjee, A., Lee, A., Campbell, E. & Mackinnon, R. Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K+ channel. eLife 2, e00594 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tao, X., Lee, A., Limapichat, W., Dougherty, D.A. & MacKinnon, R. A gating charge transfer center in voltage sensors. Science 328, 67–73 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Webster, S.M., Del Camino, D., Dekker, J.P. & Yellen, G. Intracellular gate opening in Shaker K+ channels defined by high-affinity metal bridges. Nature 428, 864–868 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Heginbotham, L., Lu, Z., Abramson, T. & MacKinnon, R. Mutations in the K+ channel signature sequence. Biophys. J. 66, 1061–1067 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baukrowitz, T. & Yellen, G. Modulation of K+ current by frequency and external [K+]: a tale of two inactivation mechanisms. Neuron 15, 951–960 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Baukrowitz, T. & Yellen, G. Use-dependent blockers and exit rate of the last ion from the multi-ion pore of a K+ channel. Science 271, 653–656 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Harris, R.E., Larsson, H.P. & Isacoff, E.Y. A permanent ion binding site located between two gates of the Shaker K+ channel. Biophys. J. 74, 1808–1820 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Panyi, G. & Deutsch, C. Cross talk between activation and slow inactivation gates of Shaker potassium channels. J. Gen. Physiol. 128, 547–559 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou, Y., Morais-Cabral, J.H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 A resolution. Nature 414, 43–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Cordero-Morales, J.F. et al. Molecular determinants of gating at the potassium-channel selectivity filter. Nat. Struct. Mol. Biol. 13, 311–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Cuello, L.G., Jogini, V., Cortes, D.M. & Perozo, E. Structural mechanism of C-type inactivation in K+ channels. Nature 466, 203–208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matulef, K., Komarov, A.G., Costantino, C.A. & Valiyaveetil, F.I. Using protein backbone mutagenesis to dissect the link between ion occupancy and C-type inactivation in K+ channels. Proc. Natl. Acad. Sci. USA 110, 17886–17891 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matulef, K., Annen, A.W., Nix, J.C. & Valiyaveetil, F.I. Individual ion binding sites in the K+ channel play distinct roles in C-type inactivation and in recovery from inactivation. Structure 24, 750–761 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Trudeau, M.C., Warmke, J.W., Ganetzky, B. & Robertson, G.A. HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269, 92–95 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Smith, P.L., Baukrowitz, T. & Yellen, G. The inward rectification mechanism of the HERG cardiac potassium channel. Nature 379, 833–836 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, W. & MacKinnon, R. Cryo-EM structure of the open human Ether-à-go-go-related K+ channel hERG. Cell 169, 422–430.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schönherr, R. & Heinemann, S.H. Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel. J. Physiol. (Lond.) 493, 635–642 (1996).

    Article  Google Scholar 

  43. Liman, E.R., Tytgat, J. & Hess, P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9, 861–871 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. McCormack, K., Lin, L., Iverson, L.E., Tanouye, M.A. & Sigworth, F.J. Tandem linkage of Shaker K+ channel subunits does not ensure the stoichiometry of expressed channels. Biophys. J. 63, 1406–1411 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  47. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  48. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  49. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, 2002).

  50. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Spassova, M. & Lu, Z. Coupled ion movement underlies rectification in an inward-rectifier K+ channel. J. Gen. Physiol. 112, 211–221 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. De Weer and T. Hoshi (University of Pennsylvania) for critical review of our manuscript; S. Stayrook (University of Pennsylvania) for technical assistance with the in-house X-ray source; R. MacKinnon (Rockefeller University) for cDNA of the rat Kv1.2 α subunit in the pPIZC-C plasmid and C. Deutsch (University of Pennsylvania) for cDNA of the rat Kv β2 subunit in the PCR3A+ plasmid; S. Long (Memorial Sloan Kettering Cancer Center) for information on Kv expression and cryo-milling; the staff at beamlines 8.2.1 and 8.2.2, ALS, Lawrence Berkeley National Laboratory, and at beamline 23-IDB, APS, Argonne National Laboratory, for their support in data collection. Research reported in this publication was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (DK109919) and the National Institute of General Medical Sciences (GM055560) of the National Institutes of Health to Z.L.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed research, performed experiments and analyzed data. V.P., Y.Z., Y.R. and Z.L. wrote the manuscript.

Corresponding author

Correspondence to Zhe Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Comparison of the tetrameric Shaker channel and a concatemer construct.

(a, b) Currents of tetrameric (a) and concatemer (b) channels, recorded from oocytes in the presence of 100 mM extracellular K+, as membrane voltage was stepped from the -80 mV holding potential to 80 mV in 10 mV increments and back to -80 mV. The dashed line identifies the zero current level. (c) Normalized tail currents (mean ± s.e.m.; n = 10 - 12) of tetrameric (open circles) and concatemer (open squares) channels plotted against membrane voltage; curves are fits of Boltzmann functions with midpoint voltage V1/2 (mean ± s.e.m.) of -30 ± 0.5 mV and apparent valence Z of 3.5 ± 0.3 for tetrameric channels or V1/2 of -30 ± 0.6 mV and apparent valence Z of 3.3 ± 0.2 for concatemer channels.

Supplementary Figure 2 Ionic currents of wild-type and mutant Kv1.2 channels, recorded from oocytes in the presence of 100 mM extracellular K+.

Ionic currents of wild-type (a) and mutant Kv1.2 (b) channels, The mutation in Kv1.2 corresponds to V478W in the Shaker channel. Currents were elicited by stepping membrane voltage from the -80 mV holding potential to 80 mV in 10 mV increments and back to -80 mV. The dashed line identifies the zero current level.

Supplementary Figure 3 Illustration of hydrogen bonds between the selectivity filter and the pore helix of Kv1.2-2.1, as defined by distances between 2.5 and 3.3 Å.

Carbon atoms of wild-type selectivity filter of two contiguous subunits (PDB: 2R9R) are shown as green and yellow sticks, oxygen atoms in red, and nitrogen atoms in blue; K+ ions and water molecules are shown as green and magenta spheres, respectively. Hydrogen bonds in the extracellular and intracellular regions are indicated by dashed blue and magenta lines, respectively.

Supplementary Figure 4 Comparison of Val377 positions in wild-type and V406W mutant I structures.

Section of super-positioned wild-type (orange) and mutant (blue) structures around the central axis of the selectivity filter, as viewed from the outside of the cell. The part of electron density (2Fo-Fc composite-omit map contoured at 1.5 σ) corresponding to Val 377 is shown.

Supplementary Figure 5 Comparison of Tyr373 in wild-type Kv1.2-2.1 and mutant I structures.

Structures of Gly372-Tyr373-Gly374 in wild-type (orange) and mutant (blue) channels are shown in two views (a and c versus b and d). The two structures were aligned according to Cα atoms of residues 364-372. The super-positioned Fo-Fc omit map of mutant molecule I, contoured at 5 σ (a, b) and 8 σ (c, d), was calculated with a model of the mutant molecule where Gly372-Tyr373-Gly374 were omitted.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pau, V., Zhou, Y., Ramu, Y. et al. Crystal structure of an inactivated mutant mammalian voltage-gated K+ channel. Nat Struct Mol Biol 24, 857–865 (2017). https://doi.org/10.1038/nsmb.3457

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3457

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing