Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Initial activation of STIM1, the regulator of store-operated calcium entry

Abstract

Physiological Ca2+ signaling in T lymphocytes and other cells depends on the STIM-ORAI pathway of store-operated Ca2+ entry. STIM1 and STIM2 are Ca2+ sensors in the endoplasmic reticulum (ER) membrane, with ER-luminal domains that monitor cellular Ca2+ stores and cytoplasmic domains that gate ORAI channels in the plasma membrane. The STIM ER-luminal domain dimerizes or oligomerizes upon dissociation of Ca2+, but the mechanism transmitting activation to the STIM cytoplasmic domain was previously undefined. Using Tb3+-acceptor energy transfer, we show that dimerization of STIM1 ER-luminal domains causes an extensive conformational change in mouse STIM1 cytoplasmic domains. The conformational change, triggered by apposition of the predicted coiled-coil 1 (CC1) regions, releases the ORAI-activating domains from their interaction with the CC1 regions and allows physical extension of the STIM1 cytoplasmic domain across the gap between ER and plasma membrane and communication with ORAI channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STIM1-PIP2 interaction.
Figure 2: Distance measurements in STIM1 cytoplasmic domain.
Figure 3: Lack of detectable CC1-CC1 association.
Figure 4: Effects of forced CC1-CC1 association.
Figure 5: Intradimer CC1-CC1 association triggers extension of the STIM1 cytoplasmic domain.
Figure 6: Model for STIM1 activation in cells.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353–356 (1992).

    Article  CAS  Google Scholar 

  2. Hoth, M. & Penner, R. Calcium release-activated calcium current in rat mast cells. J. Physiol. (Lond.) 465, 359–386 (1993).

    Article  CAS  Google Scholar 

  3. Zweifach, A. & Lewis, R.S. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc. Natl. Acad. Sci. USA 90, 6295–6299 (1993).

    Article  CAS  Google Scholar 

  4. Parekh, A.B. & Putney, J.W. Jr. Store-operated calcium channels. Physiol. Rev. 85, 757–810 (2005).

    Article  CAS  Google Scholar 

  5. Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–445 (2005).

    Article  CAS  Google Scholar 

  6. Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+ -store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241 (2005).

    Article  CAS  Google Scholar 

  7. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006).

    Article  CAS  Google Scholar 

  8. Vig, M. et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220–1223 (2006).

    Article  CAS  Google Scholar 

  9. Zhang, S.L. et al. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc. Natl. Acad. Sci. USA 103, 9357–9362 (2006).

    Article  CAS  Google Scholar 

  10. Feske, S. ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol. Rev. 231, 189–209 (2009).

    Article  CAS  Google Scholar 

  11. Feske, S. Immunodeficiency due to defects in store-operated calcium entry. Ann. NY Acad. Sci. 1238, 74–90 (2011).

    Article  CAS  Google Scholar 

  12. Zhang, S.L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005).

    Article  CAS  Google Scholar 

  13. Stathopulos, P.B., Li, G.Y., Plevin, M.J., Ames, J.B. & Ikura, M. Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitative Ca2+ entry. J. Biol. Chem. 281, 35855–35862 (2006).

    Article  CAS  Google Scholar 

  14. Brandman, O., Liou, J., Park, W.S. & Meyer, T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131, 1327–1339 (2007).

    Article  CAS  Google Scholar 

  15. Luik, R.M., Wang, B., Prakriya, M., Wu, M.M. & Lewis, R.S. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454, 538–542 (2008).

    Article  CAS  Google Scholar 

  16. Stathopulos, P.B., Zheng, L., Li, G.Y., Plevin, M.J. & Ikura, M. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135, 110–122 (2008).

    Article  CAS  Google Scholar 

  17. Cahalan, M.D. STIMulating store-operated Ca2+ entry. Nat. Cell Biol. 11, 669–677 (2009).

    Article  CAS  Google Scholar 

  18. Hogan, P.G., Lewis, R.S. & Rao, A. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu. Rev. Immunol. 28, 491–533 (2010).

    Article  CAS  Google Scholar 

  19. Soboloff, J., Rothberg, B.S., Madesh, M. & Gill, D.L. STIM proteins: dynamic calcium signal transducers. Nat. Rev. Mol. Cell Biol. 13, 549–565 (2012).

    Article  CAS  Google Scholar 

  20. Huang, G.N. et al. STIM1 carboxyl-terminus activates native SOC, I crac and TRPC1 channels. Nat. Cell Biol. 8, 1003–1010 (2006).

    Article  CAS  Google Scholar 

  21. Yuan, J.P. et al. SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat. Cell Biol. 11, 337–343 (2009).

    Article  CAS  Google Scholar 

  22. Park, C.Y. et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136, 876–890 (2009).

    Article  CAS  Google Scholar 

  23. Muik, M. et al. A cytosolic homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. J. Biol. Chem. 284, 8421–8426 (2009).

    Article  CAS  Google Scholar 

  24. Kawasaki, T., Lange, I. & Feske, S. A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem. Biophys. Res. Commun. 385, 49–54 (2009).

    Article  CAS  Google Scholar 

  25. Zhou, Y. et al. STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat. Struct. Mol. Biol. 17, 112–116 (2010).

    Article  CAS  Google Scholar 

  26. Liou, J., Fivaz, M., Inoue, T. & Meyer, T. Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc. Natl. Acad. Sci. USA 104, 9301–9306 (2007).

    Article  CAS  Google Scholar 

  27. Walsh, C.M. et al. Role of phosphoinositides in STIM1 dynamics and store-operated calcium entry. Biochem. J. 425, 159–168 (2009).

    Article  Google Scholar 

  28. Ercan, E. et al. A conserved, lipid-mediated sorting mechanism of yeast Ist2 and mammalian STIM proteins to the peripheral ER. Traffic 10, 1802–1818 (2009).

    Article  CAS  Google Scholar 

  29. Frischauf, I. et al. Molecular determinants of the coupling between STIM1 and Orai channels: differential activation of Orai1–3 channels by a STIM1 coiled-coil mutant. J. Biol. Chem. 284, 21696–21706 (2009).

    Article  CAS  Google Scholar 

  30. Zeng, W. et al. STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol. Cell 32, 439–448 (2008).

    Article  CAS  Google Scholar 

  31. Lefkimmiatis, K. et al. Store-operated cyclic AMP signalling mediated by STIM1. Nat. Cell Biol. 11, 433–442 (2009).

    Article  CAS  Google Scholar 

  32. Park, C.Y., Shcheglovitov, A. & Dolmetsch, R. The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels. Science 330, 101–105 (2010).

    Article  CAS  Google Scholar 

  33. Wang, Y. et al. The calcium store sensor, STIM1, reciprocally controls Orai and CaV1.2 channels. Science 330, 105–109 (2010).

    Article  CAS  Google Scholar 

  34. Wu, M.M., Buchanan, J., Luik, R.M. & Lewis, R.S. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174, 803–813 (2006).

    Article  CAS  Google Scholar 

  35. Várnai, P., Tóth, B., Tóth, D.J., Hunyady, L. & Balla, T. Visualization and manipulation of plasma membrane-reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 complex. J. Biol. Chem. 282, 29678–29690 (2007).

    Article  Google Scholar 

  36. Orci, L. et al. STIM1-induced precortical and cortical subdomains of the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 106, 19358–19362 (2009).

    Article  CAS  Google Scholar 

  37. Carrasco, S. & Meyer, T. STIM proteins and the endoplasmic reticulum-plasma membrane junctions. Annu. Rev. Biochem. 80, 973–1000 (2011).

    Article  CAS  Google Scholar 

  38. Selvin, P.R. & Hearst, J.E. Luminescence energy transfer using a terbium chelate: improvements on fluorescence energy transfer. Proc. Natl. Acad. Sci. USA 91, 10024–10028 (1994).

    Article  CAS  Google Scholar 

  39. Selvin, P.R. Principles and biophysical applications of lanthanide-based probes. Annu. Rev. Biophys. Biomol. Struct. 31, 275–302 (2002).

    Article  CAS  Google Scholar 

  40. Xiao, M. et al. An actin-dependent conformational change in myosin. Nat. Struct. Biol. 10, 402–408 (2003).

    Article  CAS  Google Scholar 

  41. Cha, A., Snyder, G.E., Selvin, P.R. & Bezanilla, F. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402, 809–813 (1999).

    Article  CAS  Google Scholar 

  42. Posson, D.J., Ge, P., Miller, C., Bezanilla, F. & Selvin, P.R. Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Nature 436, 848–851 (2005).

    Article  CAS  Google Scholar 

  43. Callaci, S., Heyduk, E. & Heyduk, T. Core RNA polymerase from E. coli induces a major change in the domain arrangement of the σ70 subunit. Mol. Cell 3, 229–238 (1999).

    Article  CAS  Google Scholar 

  44. Nath, A., Atkins, W.M. & Sligar, S.G. Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46, 2059–2069 (2007).

    Article  CAS  Google Scholar 

  45. Muik, M. et al. STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation. EMBO J. 30, 1678–1689 (2011).

    Article  CAS  Google Scholar 

  46. Korzeniowski, M.K., Manjarrés, I.M., Várnai, P. & Balla, T. Activation of STIM1-Orai1 involves an intramolecular switching mechanism. Sci. Signal. 3, ra82 (2010).

    Article  CAS  Google Scholar 

  47. Muik, M. et al. Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J. Biol. Chem. 283, 8014–8022 (2008).

    Article  CAS  Google Scholar 

  48. Horrocks, W.D. Jr. & Sudnick, D.R. Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules. J. Am. Chem. Soc. 101, 334–340 (1979).

    Article  CAS  Google Scholar 

  49. Beeby, A. et al. Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states. J. Chem. Soc. Perkin Trans. 2, 493–503 (1999).

    Article  Google Scholar 

  50. Martin, L. Development of lanthanide-binding tags (LBTs) as powerful and versatile peptides for use in studies of proteins and protein interactions. PhD thesis, Massachusetts Inst. of Technology (2008).

  51. Williams, R.T. et al. Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem. J. 357, 673–685 (2001).

    Article  CAS  Google Scholar 

  52. Covington, E.D., Wu, M.M. & Lewis, R.S. Essential role for the CRAC activation domain in store-dependent oligomerization of STIM1. Mol. Biol. Cell 21, 1897–1907 (2010).

    Article  CAS  Google Scholar 

  53. Yang, X., Jin, H., Cai, X., Li, S. & Shen, Y. Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1). Proc. Natl. Acad. Sci. USA 109, 5657–5662 (2012).

    Article  CAS  Google Scholar 

  54. Katchalski-Katzir, E. et al. Design and synthesis of peptides that bind α-bungarotoxin with high affinity and mimic the three-dimensional structure of the binding-site of acetylcholine receptor. Biophys. Chem. 100, 293–305 (2003).

    Article  CAS  Google Scholar 

  55. Lau, T.L., Kim, C., Ginsberg, M.H. & Ulmer, T.S. The structure of the integrin αIIbβ3 transmembrane complex explains integrin transmembrane signalling. EMBO J. 28, 1351–1361 (2009).

    Article  CAS  Google Scholar 

  56. Anthis, N.J. et al. The structure of an integrin talin complex reveals the basis of inside-out signal transduction. EMBO J. 28, 3623–3632 (2009).

    Article  CAS  Google Scholar 

  57. Kim, C., Ye, F. & Ginsberg, M.H. Regulation of integrin activation. Annu. Rev. Cell Dev. Biol. 27, 321–345 (2011).

    Article  CAS  Google Scholar 

  58. Sculimbrene, B.R. & Imperiali, B. Lanthanide-binding tags as luminescent probes for studying protein interactions. J. Am. Chem. Soc. 128, 7346–7352 (2006).

    Article  CAS  Google Scholar 

  59. Heyduk, T. & Heyduk, E. Luminescence energy transfer with lanthanide chelates: interpretation of sensitized acceptor decay amplitudes. Anal. Biochem. 289, 60–67 (2001).

    Article  CAS  Google Scholar 

  60. Ritchie, T.K. et al. Chapter 11: reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 464, 211–231 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by US National Institutes of Health grants AI084167 and AI40127 (to A.R. and P.G.H.) and by grants from the Canadian Institutes of Health Research and the Heart and Stroke Foundation of Canada (to M.I.). Y.Z. has been supported by a postdoctoral fellowship from The Leukemia & Lymphoma Society (LLS) and by an LLS Special Fellow award, P.S. by a Human Frontier Science Program cross-disciplinary fellowship and A.G. by a Cancer Research Institute–Irvington Institute Fellowship. We thank Y. Shen (Nankai University, Tianjin, China) for the plasmid pMCSG9-SOAR and S. Sligar (University of Illinois Urbana-Champaign, Urbana, Illinois, USA) for the plasmid pMSP1D1.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and P.G.H. designed the study. Y.Z. designed engineered proteins, developed the assays and carried out the experiments with assistance from S.R. and S.S. P.S. made a detailed study of STIM1 binding to liposomes. P.M. prepared and characterized liposomes for the binding assays. A.G. contributed recombinant proteins and technical suggestions. P.B.S. and M.I. contributed the SEC-MALS characterization of recombinant CC1. Y.Z., A.R. and P.G.H. analyzed data, with input from the other authors. Y.Z. and P.G.H. wrote the manuscript.

Corresponding author

Correspondence to Patrick G Hogan.

Ethics declarations

Competing interests

A.R. and P.G.H. are founders of CalciMedica, Inc. and are members of its scientific advisory board.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary Note (PDF 6020 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Srinivasan, P., Razavi, S. et al. Initial activation of STIM1, the regulator of store-operated calcium entry. Nat Struct Mol Biol 20, 973–981 (2013). https://doi.org/10.1038/nsmb.2625

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2625

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing