Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Balanced interactions of calcineurin with AKAP79 regulate Ca2+–calcineurin–NFAT signaling

Abstract

In hippocampal neurons, the scaffold protein AKAP79 recruits the phosphatase calcineurin to L-type Ca2+ channels and couples Ca2+ influx to activation of calcineurin and of its substrate, the transcription factor NFAT. Here we show that an IAIIIT anchoring site in human AKAP79 binds the same surface of calcineurin as the PxIxIT recognition peptide of NFAT, albeit more strongly. A modest decrease in calcineurin-AKAP affinity due to an altered anchoring sequence is compatible with NFAT activation, whereas a further decrease impairs activation. Counterintuitively, increasing calcineurin-AKAP affinity increases recruitment of calcineurin to the scaffold but impairs NFAT activation; this is probably due to both slower release of active calcineurin from the scaffold and sequestration of active calcineurin by 'decoy' AKAP sites. We propose that calcineurin-AKAP79 scaffolding promotes NFAT signaling by balancing strong recruitment of calcineurin with its efficient release to communicate with NFAT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of calcineurin in complex with AKAP79 peptide.
Figure 2: The calcineurin–AKAP79 complex in solution.
Figure 3: Equilibrium and kinetic measurements of calcineurin binding to AKAP79.
Figure 4: A high-affinity AKAP79 variant, PPAIIIT, does not support NFAT nuclear translocation in hippocampal neurons.
Figure 5: The high-affinity AKAP79 variant PPAIIIT does not couple Ca2+ influx to NFAT-dependent transcription in hippocampal neurons.
Figure 6: The high-affinity AKAP79 PPAIIIT variant decreases the rate of calcineurin dissociation in vitro and reduces the mobility of calcineurin in dendritic spines.
Figure 7: Model explaining the effects of altered calcineurin-AKAP79 anchoring interactions.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Zeke, A., Lukacs, M., Lim, W.A. & Remenyi, A. Scaffolds: interaction platforms for cellular signalling circuits. Trends Cell Biol. 19, 364–374 (2009).

    Article  CAS  Google Scholar 

  2. Scott, J.D. & Pawson, T. Cell signaling in space and time: where proteins come together and when they're apart. Science 326, 1220–1224 (2009).

    Article  CAS  Google Scholar 

  3. Good, M.C., Zalatan, J.G. & Lim, W.A. Scaffold proteins: hubs for controlling the flow of cellular information. Science 332, 680–686 (2011).

    Article  CAS  Google Scholar 

  4. Coghlan, V.M. et al. Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 267, 108–111 (1995).

    Article  CAS  Google Scholar 

  5. Logue, J.S. & Scott, J.D. Organizing signal transduction through A-kinase anchoring proteins (AKAPs). FEBS J. 277, 4370–4375 (2010).

    Article  CAS  Google Scholar 

  6. Hogan, P.G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003).

    Article  CAS  Google Scholar 

  7. Molkentin, J.D. & Dorn, G.W. II. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 63, 391–426 (2001).

    Article  CAS  Google Scholar 

  8. Heineke, J. & Molkentin, J.D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol. 7, 589–600 (2006).

    Article  CAS  Google Scholar 

  9. Groth, R.D., Dunbar, R.L. & Mermelstein, P.G. Calcineurin regulation of neuronal plasticity. Biochem. Biophys. Res. Commun. 311, 1159–1171 (2003).

    Article  CAS  Google Scholar 

  10. Li, H., Rao, A. & Hogan, P.G. Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol. 21, 91–103 (2011).

    Article  CAS  Google Scholar 

  11. Feske, S., Okamura, H., Hogan, P.G. & Rao, A. Ca2+/calcineurin signalling in cells of the immune system. Biochem. Biophys. Res. Commun. 311, 1117–1132 (2003).

    Article  CAS  Google Scholar 

  12. Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484 (2005).

    Article  CAS  Google Scholar 

  13. Aramburu, J. et al. Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT. Mol. Cell 1, 627–637 (1998).

    Article  CAS  Google Scholar 

  14. Aramburu, J. et al. Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science 285, 2129–2133 (1999).

    Article  CAS  Google Scholar 

  15. Li, H., Rao, A. & Hogan, P.G. Structural delineation of the calcineurin–NFAT interaction and its parallels to PP1 targeting interactions. J. Mol. Biol. 342, 1659–1674 (2004).

    Article  CAS  Google Scholar 

  16. Li, H., Zhang, L., Rao, A., Harrison, S.C. & Hogan, P.G. Structure of calcineurin in complex with PVIVIT peptide: portrait of a low-affinity signalling interaction. J. Mol. Biol. 369, 1296–1306 (2007).

    Article  CAS  Google Scholar 

  17. Takeuchi, K., Roehrl, M.H., Sun, Z.Y. & Wagner, G. Structure of the calcineurin-NFAT complex: defining a T cell activation switch using solution NMR and crystal coordinates. Structure 15, 587–597 (2007).

    Article  CAS  Google Scholar 

  18. Roy, J., Li, H., Hogan, P.G. & Cyert, M.S. A conserved docking site modulates substrate affinity for calcineurin, signaling output, and in vivo function. Mol. Cell 25, 889–901 (2007).

    Article  CAS  Google Scholar 

  19. Roy, J. & Cyert, M.S. Cracking the phosphatase code: docking interactions determine substrate specificity. Sci. Signal. 2, re9 (2009).

    Article  Google Scholar 

  20. Shi, Y. Serine/threonine phosphatases: mechanism through structure. Cell 139, 468–484 (2009).

    Article  CAS  Google Scholar 

  21. Oliveria, S.F., Dell'Acqua, M.L. & Sather, W.A. AKAP79/150 anchoring of calcineurin controls neuronal L-type Ca2+ channel activity and nuclear signaling. Neuron 55, 261–275 (2007).

    Article  CAS  Google Scholar 

  22. Dell'Acqua, M.L. et al. Regulation of neuronal PKA signaling through AKAP targeting dynamics. Eur. J. Cell Biol. 85, 627–633 (2006).

    Article  CAS  Google Scholar 

  23. Wong, W. & Scott, J.D. AKAP signalling complexes: focal points in space and time. Nat. Rev. Mol. Cell Biol. 5, 959–970 (2004).

    Article  CAS  Google Scholar 

  24. Hoshi, N. et al. AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat. Neurosci. 6, 564–571 (2003).

    Article  CAS  Google Scholar 

  25. Hoshi, N., Langeberg, L.K. & Scott, J.D. Distinct enzyme combinations in AKAP signalling complexes permit functional diversity. Nat. Cell Biol. 7, 1066–1073 (2005).

    Article  CAS  Google Scholar 

  26. Tavalin, S.J. et al. Regulation of GluR1 by the A-kinase anchoring protein 79 (AKAP79) signaling complex shares properties with long-term depression. J. Neurosci. 22, 3044–3051 (2002).

    Article  CAS  Google Scholar 

  27. Liu, G. et al. Assembly of a Ca2+-dependent BK channel signaling complex by binding to β2 adrenergic receptor. EMBO J. 23, 2196–2205 (2004).

    Article  CAS  Google Scholar 

  28. Tunquist, B.J. et al. Loss of AKAP150 perturbs distinct neuronal processes in mice. Proc. Natl. Acad. Sci. USA 105, 12557–12562 (2008).

    Article  CAS  Google Scholar 

  29. Graef, I.A. et al. L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature 401, 703–708 (1999).

    Article  CAS  Google Scholar 

  30. Dell'Acqua, M.L., Dodge, K.L., Tavalin, S.J. & Scott, J.D. Mapping the protein phosphatase-2B anchoring site on AKAP79. Binding and inhibition of phosphatase activity are mediated by residues 315–360. J. Biol. Chem. 277, 48796–48802 (2002).

    Article  CAS  Google Scholar 

  31. Oliveria, S.F., Gomez, L.L. & Dell'Acqua, M.L. Imaging kinase–AKAP79–phosphatase scaffold complexes at the plasma membrane in living cells using FRET microscopy. J. Cell Biol. 160, 101–112 (2003).

    Article  CAS  Google Scholar 

  32. Gorski, J.A., Gomez, L.L., Scott, J.D. & Dell'Acqua, M.L. Association of an A-kinase-anchoring protein signaling scaffold with cadherin adhesion molecules in neurons and epithelial cells. Mol. Biol. Cell 16, 3574–3590 (2005).

    Article  CAS  Google Scholar 

  33. Gold, M.G. et al. Molecular basis of AKAP specificity for PKA regulatory subunits. Mol. Cell 24, 383–395 (2006).

    Article  CAS  Google Scholar 

  34. Gold, M.G. et al. Architecture and dynamics of an A-kinase anchoring protein 79 (AKAP79) signaling complex. Proc. Natl. Acad. Sci. USA 108, 6426–6431 (2011).

    Article  CAS  Google Scholar 

  35. Stemmer, P. & Klee, C.B. Serine/threonine phosphatases in the nervous system. Curr. Opin. Neurobiol. 1, 53–64 (1991).

    Article  CAS  Google Scholar 

  36. Salazar, C. & Hofer, T. Allosteric regulation of the transcription factor NFAT1 by multiple phosphorylation sites: a mathematical analysis. J. Mol. Biol. 327, 31–45 (2003).

    Article  CAS  Google Scholar 

  37. Bashor, C.J., Horwitz, A.A., Peisajovich, S.G. & Lim, W.A. Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems. Annu. Rev. Biophys. 39, 515–537 (2010).

    Article  CAS  Google Scholar 

  38. Pettersen, E.F. et al. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  39. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  40. Alto, N.M. et al. Bioinformatic design of A-kinase anchoring protein-in silico: a potent and selective peptide antagonist of type II protein kinase A anchoring. Proc. Natl. Acad. Sci. USA 100, 4445–4450 (2003).

    Article  CAS  Google Scholar 

  41. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  42. Brünger, A.T. et al. Crystallography & NMR system: a new software system for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  43. Wang, Z.X. An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule. FEBS Lett. 360, 111–114 (1995).

    Article  CAS  Google Scholar 

  44. Roehrl, M.H. et al. Selective inhibition of calcineurin-NFAT signaling by blocking protein–protein interaction with small organic molecules. Proc. Natl. Acad. Sci. USA 101, 7554–7559 (2004).

    Article  CAS  Google Scholar 

  45. Gomez, L.L., Alam, S., Smith, K.E., Horne, E. & Dell'Acqua, M.L. Regulation of A-kinase anchoring protein 79/150–cAMP-dependent protein kinase postsynaptic targeting by NMDA receptor activation of calcineurin and remodeling of dendritic actin. J. Neurosci. 22, 7027–7044 (2002).

    Article  CAS  Google Scholar 

  46. Robertson, H.R., Gibson, E.S., Benke, T.A. & Dell'Acqua, M.L. Regulation of postsynaptic structure and function by an A-kinase anchoring protein–membrane-associated guanylate kinase scaffolding complex. J. Neurosci. 29, 7929–7943 (2009).

    Article  CAS  Google Scholar 

  47. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2, 444–456 (2001).

    Article  CAS  Google Scholar 

  48. Sharma, K., Fong, D.K. & Craig, A.M. Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation. Mol. Cell. Neurosci. 31, 702–712 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Department of Neurobiology, Harvard Medical School, for use of its spectrofluorometer, and to S. Lehrer, Boston Biomedical Research Institute, for access to the stopped-flow instrument. Diffraction data were collected at the Advanced Photon Source on Northeastern Collaborative Access Team beamline 24-ID-C, which is supported by award RR15-301 from the National Center for Research Resources at the US National Institutes of Health. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. We thank A. Sorkin, University of Pittsburgh, for providing the tandem YFP-CFP construct. The work was supported by US National Institutes of Health grants AI40127 (to A. Rao and P.G.H.), MH080291 (to M.L.D.) and AI090428 (to H.L.). M.D.P. was supported in part by T32NS007083 and by an American Heart Association Predoctoral Fellowship from the Pacific Mountain Affiliate. J.G.M. was supported in part by T32HD041697.

Author information

Authors and Affiliations

Authors

Contributions

H.L. prepared the recombinant calcineurin and AKAP79 proteins, carried out the X-ray crystallography, developed the FRET assay for calcineurin-AKAP interaction and performed equilibrium binding measurements. H.L. and P.G.H. analyzed data from these experiments. H.L. and A.S. carried out SEC-MALS measurements. H.L. and P.G.H. performed and analyzed the stopped-flow kinetic experiments. M.D.P., J.G.M. and M.L.D. carried out and analyzed the FRET and YFP/CFP ratio measurements in MDCK cells. M.D.P. and M.L.D. carried out and analyzed the NFAT localization and FRAP experiments with hippocampal neurons. J.G.M. and M.L.D. carried out and analyzed the transcriptional reporter experiments with hippocampal neurons. P.G.H. and H.L. drafted the manuscript, with significant contributions from M.L.D., M.D.P. and J.G.M.

Corresponding authors

Correspondence to Mark L Dell'Acqua or Patrick G Hogan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Methods (PDF 1522 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Pink, M., Murphy, J. et al. Balanced interactions of calcineurin with AKAP79 regulate Ca2+–calcineurin–NFAT signaling. Nat Struct Mol Biol 19, 337–345 (2012). https://doi.org/10.1038/nsmb.2238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2238

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing