Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conformational changes in IgE contribute to its uniquely slow dissociation rate from receptor FcɛRI

Abstract

Among antibody classes, IgE has a uniquely slow dissociation rate from, and high affinity for, its cell surface receptor FcɛRI. We show the structural basis for these key determinants of the ability of IgE to mediate allergic hypersensitivity through the 3.4-Å-resolution crystal structure of human IgE-Fc (consisting of the Cɛ2, Cɛ3 and Cɛ4 domains) bound to the extracellular domains of the FcɛRI α chain. Comparison with the structure of free IgE-Fc (reported here at a resolution of 1.9 Å) shows that the antibody, which has a compact, bent structure before receptor engagement, becomes even more acutely bent in the complex. Thermodynamic analysis indicates that the interaction is entropically driven, which explains how the noncontacting Cɛ2 domains, in place of the flexible hinge region of IgG antibodies, contribute together with the conformational changes to the unique binding properties of IgE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the IgE-Fc–sFcɛRIα complex, in two approximately orthogonal views.
Figure 2: Closure of an interdomain cleft in IgE-Fc upon receptor binding.
Figure 3: Interactions at the two subsites.
Figure 4: Thermodynamics of the IgE-FcɛRI interaction.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Asher, M.I. et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 368, 733–743 (2006).

    Article  PubMed  Google Scholar 

  2. Holgate, S. et al. The use of omalizumab in the treatment of severe allergic asthma: A clinical experience update. Respir. Med. 103, 1098–1113 (2009).

    Article  PubMed  Google Scholar 

  3. Gould, H.J. & Sutton, B.J. IgE in allergy and asthma today. Nat. Rev. Immunol. 8, 205–217 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Maenaka, K., van der Merwe, P.A., Stuart, D.I., Jones, E.Y. & Sondermann, P. The human low affinity Fcγ receptors IIa, IIb and III bind IgG with fast kinetics and distinct thermodynamic properties. J. Biol. Chem. 276, 44898–44904 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Gould, H.J. et al. The biology of IgE and the basis of allergic disease. Annu. Rev. Immunol. 21, 579–628 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Basu, M. et al. Purification and characterization of human recombinant IgE-Fc fragments that bind to the human high affinity IgE receptor. J. Biol. Chem. 268, 13118–13127 (1993).

    CAS  PubMed  Google Scholar 

  7. Young, R.J. et al. Secretion of recombinant human IgE-Fc by mammalian cells and biological activity of glycosylation site mutants. Protein Eng. 8, 193–199 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Cook, J.P.D. et al. Identification of contact residues in the IgE binding site of human FcɛRIα. Biochemistry 36, 15579–15588 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Henry, A.J. et al. Participation of the N-terminal region of Cɛ3 in the binding of human IgE to its high affinity receptor FcɛRI. Biochemistry 36, 15568–15578 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. McDonnell, J.M. et al. The structure of the IgE Cɛ2 domain and its role in stabilizing the complex with its high-affinity receptor FcɛRI. Nat. Struct. Biol. 8, 437–441 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Zheng, Y., Shopes, B., Holowka, D. & Baird, B. Dynamic conformations compared for IgE and IgG1 in solution and bound to receptors. Biochemistry 31, 7446–7456 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Beavil, A.J., Young, R.J., Sutton, B.J. & Perkins, S.J. Bent domain structure of recombinant human IgE-Fc in solution by X-ray and neutron scattering in conjunction with an automated curve fitting procedure. Biochemistry 34, 14449–14461 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Wan, T. et al. The crystal structure of IgE Fc reveals an asymmetrically bent conformation. Nat. Immunol. 3, 681–686 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Garman, S.C., Wurzburg, B., Tarchevskava, S., Kinet, J.-P. & Jardetzky, T. Structure of the Fc fragment of human IgE bound to its high-affinity receptor FcɛRIα. Nature 406, 259–266 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Whitty, A. & Kumaravel, G. Between a rock and a hard place. Nat. Chem. Biol. 2, 112–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Garman, S.C., Kinet, J.-P. & Jardetzky, T.S. Crystal structure of the human high-affinity IgE receptor. Cell 95, 951–961 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Garman, S.C., Sechi, S., Kinet, J.-P. & Jardetzky, T.S. The analysis of the human high affinity IgE receptor FcɛRIα from multiple crystal forms. J. Mol. Biol. 311, 1049–1062 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Arnold, J.N. et al. The glycosylation of human serum IgD and IgE and the accessibility of identified oligomannose structures for interaction with mannan-binding lectin. J. Immunol. 173, 6831–6840 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Sondermann, P., Huber, R., Oosthuizen, V. & Jacob, U. The 3.2Å crystal structure of the human IgG1 Fc fragment–FcγRIII complex. Nature 406, 267–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Radaev, S., Motyka, S., Fridman, W.-H., Sautes-Fridman, C. & Sun, P. The structure of a human type III Fcγ receptor in complex with Fc. J. Biol. Chem. 276, 16469–16477 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Mirza, O. et al. Dominant epitopes and allergic cross-reactivity: complex formation between a Fab fragment of a monoclonal murine IgG antibody and the major allergen from birch pollen Bet v 1. J. Immunol. 165, 331–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Padavattan, S. et al. Identification of a B-cell epitope of hyaluronidase, a major bee venom allergen, from its crystal structure in complex with a specific Fab. J. Mol. Biol. 368, 742–752 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Niemi, M. et al. Molecular interactions between a recombinant IgE antibody and the β-lactoglobulin allergen. Structure 15, 1413–1421 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Li, M. et al. Crystal structure of a dimerized cockroach allergen Bla g 2 complexed with a monoclonal antibody. J. Biol. Chem. 283, 22806–22814 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Padavattan, S. et al. High-affinity recognition of a conformational epitope of the major respiratory allergen Phl p 2 as revealed by X-ray crystallography. J. Immunol. 182, 2141–2151 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Rouvinen, J. et al. Transient dimers of allergens. PLoS ONE 5, e9037 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Roux, K.H., Strelets, L., Brekke, O.H., Sandlie, I. & Michaelsen, T.E. Comparisons of the ability of human IgG3 mutants, IgM, IgE, and IgA2, to form small immune complexes: a role for flexibility and geometry. J. Immunol. 161, 4083–4090 (1998).

    CAS  PubMed  Google Scholar 

  28. Henry, A.J., McDonnell, J.M., Ghirlando, R., Sutton, B.J. & Gould, H.J. Conformation of the isolated Cɛ3 domain of IgE and its complex with the high-affinity receptor, FcɛRI. Biochemistry 39, 7406–7413 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Price, N.E., Price, N.C., Kelly, S.M. & McDonnell, J.M. The key role of protein flexibility in modulating IgE interactions. J. Biol. Chem. 280, 2324–2330 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Dorrington, K.J. & Bennich, H. Thermally induced structural changes in immunoglobulin E. J. Biol. Chem. 248, 8378–8384 (1973).

    CAS  PubMed  Google Scholar 

  31. Demarest, S.J. et al. An intermediate pH unfolding transition abrogates the ability of IgE to interact with its high affinity receptor FcɛRIα. J. Biol. Chem. 281, 30755–30767 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Wurzburg, B.A., Garman, S.C. & Jardetzky, T.S. Structure of the human IgE-Fc Cɛ3-Cɛ4 reveals conformational flexibility in the antibody effector domains. Immunity 13, 375–385 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Wurzburg, B.A. & Jardetzky, T.S. Conformational flexibility in immunoglobulin E-Fc3–4 revealed in multiple crystal forms. J. Mol. Biol. 393, 176–190 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sondermann, P., Kaiser, J. & Jacob, U. Molecular basis for immune complex recognition: a comparison of Fc-receptor structures. J. Mol. Biol. 309, 737–749 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. McDonnell, J.M. et al. Structure based design and characterization of peptides that inhibit IgE binding to its high-affinity receptor. Nat. Struct. Biol. 3, 419–426 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Vangelista, L. et al. The immunoglobulin-like modules Cɛ3 and α2 are the minimal units necessary for human IgE-FcɛRI interaction. J. Clin. Invest. 103, 1571–1578 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hunt, J. et al. Disulphide linkage controls the affinity and stoichiometry of IgE Fcɛ3–4 binding to FcɛRI. J. Biol. Chem. 280, 16808–16814 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Hunt, J. et al. Attenuation of IgE affinity for FcɛRI radically reduces the allergic response in vitro and in vivo. J. Biol. Chem. 283, 29882–29887 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weiss, M.S. Global indicators of X-ray data quality. J. Appl. Crystallogr. 34, 130–135 (2001).

    Article  CAS  Google Scholar 

  40. Nettleship, J.E., Rahman-Huq, N. & Owens, R.J. The production of glycoproteins by transient expression in mammalian cells. Methods Mol. Biol. 498, 245–263 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Leslie, A.G.W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 + ESF-EAMCB Newslett. Protein Crystallogr. no. 26 (1992).

  42. Collaborative Computational Project. Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  43. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  44. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  45. Brünger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  46. Afonine, P.V., Grosse-Kunstleve, R.W. & Adams, P.D. The Phenix refinement framework. CCP4 Newsletter, no. 42, contribution 8 (2005).

  47. Vaguine, A.A., Richelle, J. & Wodak, S.J. SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr. D 55, 191–205 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Painter, J. & Merritt, E.A. TLSMD web server for the generation of multi-group TLS models. J. Appl. Crystallogr. 39, 109–111 (2006).

    Article  CAS  Google Scholar 

  51. Wlodek, S., Skillman, A.G. & Nicholls, A. Automated ligand placement and refinement with a combined force field and shape potential. Acta Crystallogr. D Biol. Crystallogr. 62, 741–749 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Hayward, S. & Berendsen, J.C. Systematic analysis of domain motions in proteins from conformational change; new research on citrate synthase and T4 lysozyme. Proteins 30, 144–154 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Hayward, S. & Lee, R.A. Improvements in the analysis of domain motions in proteins from conformational change: DynDom version 1.50. J. Mol. Graph. Model. 21, 181–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Hodis, E., Schreiber, G., Rother, K. & Sussman, J.L. eMovie: a storyboard-based tool for making molecular movies. Trends Biochem. Sci. 32, 199–204 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Myszka, D.G. Improving biosensor analysis. J. Mol. Recognit. 12, 279–284 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Rahman for assistance with receptor protein production (Oxford Protein Production Facility), T. Walter for technical advice on crystallization of the complex, and K. Harlos and C. Siebold (Division of Structural Biology, Wellcome Trust Centre for Human Genetics) for X-ray data collection of the complex, together with beamline support staff at European Synchrotron Radiation Facility. This work was also carried out with the support of the Diamond Light Source. The work was funded by Asthma UK and the UK Medical Research Council.

Author information

Authors and Affiliations

Authors

Contributions

M.D.H. and A.M.D. carried out the crystallographic analysis of the complex, and B.D. the crystallographic analysis of IgE-Fc; M.D.H., J.E.N., J.H., A.J.B. and R.J.O. produced the proteins; S.C.B. and J.M.M. carried out the thermodynamic analysis; E.G. contributed to the analysis of the conformational changes; H.J.G., A.J.B. and B.J.S. planned and directed the project; M.D.H., A.M.D., J.M.M. and B.J.S. wrote the paper.

Corresponding author

Correspondence to Brian J Sutton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 706 kb)

Supplementary Video 1

Overall structure of the IgE-Fc/sFcɛRIα complex. This video shows the proposed orientation of the complex in relation to the cell membrane and highlights the acute bend in IgE-Fc, with the Cɛ2 domains packed against the Cɛ3 and Cɛ4 domains. The complex is rotated by 90° clockwise, 180° anti-clockwise, and 90° clockwise about an axis orthogonal to the cell membrane. IgE-Fc chains A and B are colored in green and purple respectively, and sFcɛRIα in yellow. (MOV 2938 kb)

Supplementary Video 2

Conformational change in IgE-Fc. This video demonstrates the conformational change that takes place in IgE-Fc upon sFcɛRIα binding. The video shows the same conformational change from four views, each 90° apart. The change is demonstrated by morphing the free structure of IgE-Fc into that of the receptor-bound form, and then back to the free form. IgE-Fc chains A and B are colored in green and purple, respectively. (MOV 11684 kb)

Supplementary Video 3

Conformational change in Cɛ2 and Cɛ3 domains on receptor binding. This video demonstrates the conformational change that takes place in IgE-Fc upon sFcɛRIα binding (with emphasis on the Cɛ2 domains), and shows how the Cɛ2A, Cɛ2B and Cɛ3A domains move together as a rigid unit. The video also shows the small conformational change within Cɛ3B. The free structure of IgE-Fc is first shown, and then morphed into the receptor-bound form. The receptor is briefly displayed, after which IgE-Fc is morphed back to the free form. IgE-Fc chains A and B are colored in green and purple respectively, and sFcɛRIα in yellow. (MOV 2149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holdom, M., Davies, A., Nettleship, J. et al. Conformational changes in IgE contribute to its uniquely slow dissociation rate from receptor FcɛRI. Nat Struct Mol Biol 18, 571–576 (2011). https://doi.org/10.1038/nsmb.2044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2044

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing