Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation

Abstract

X-ray and magnetic resonance approaches, though central to studies of G protein–coupled receptor (GPCR)-mediated signaling, cannot address GPCR protein dynamics or plasticity. Here we show that solid-state 2H NMR relaxation elucidates picosecond-to-nanosecond–timescale motions of the retinal ligand that influence larger-scale functional dynamics of rhodopsin in membranes. We propose a multiscale activation mechanism whereby retinal initiates collective helix fluctuations in the meta I–meta II equilibrium on the microsecond-to-millisecond timescale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Site-specific 2H NMR relaxation illuminates functional dynamics of retinylidene methyl groups within binding pocket of rhodopsin.
Figure 2: Solid-state 2H NMR captures site-specific changes in retinal mobility during light activation of rhodopsin.
Figure 3: 2H NMR relaxation of retinal sheds new light on activation mechanism of rhodopsin.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kobilka, B. & Schertler, G.F.X. Trends Pharmacol. Sci. 29, 79–83 (2008).

    Article  CAS  Google Scholar 

  2. Ahuja, S. & Smith, S.O. Trends Pharmacol. Sci. 30, 494–502 (2009).

    Article  CAS  Google Scholar 

  3. Okada, T. et al. J. Mol. Biol. 342, 571–583 (2004).

    Article  CAS  Google Scholar 

  4. Ridge, K.D. & Palczewski, K. J. Biol. Chem. 282, 9297–9301 (2007).

    Article  CAS  Google Scholar 

  5. Brown, M.F. J. Chem. Phys. 77, 1576–1599 (1982).

    Article  CAS  Google Scholar 

  6. Altenbach, C., Kusnetzow, A.K., Ernst, O.P., Hofmann, K.P. & Hubbell, W.L. Proc. Natl. Acad. Sci. USA 105, 7439–7444 (2008).

    Article  CAS  Google Scholar 

  7. Ahuja, S. et al. J. Biol. Chem. 284, 10190–10201 (2009).

    Article  CAS  Google Scholar 

  8. Frauenfelder, H. et al. Proc. Natl. Acad. Sci. USA 106, 5129–5134 (2009).

    Article  CAS  Google Scholar 

  9. Vogel, R. et al. Biochemistry 45, 1640–1652 (2006).

    Article  CAS  Google Scholar 

  10. Knierim, B., Hofmann, K.P., Ernst, O.P. & Hubbell, W.L. Proc. Natl. Acad. Sci. USA 104, 20290–20295 (2007).

    Article  CAS  Google Scholar 

  11. Mahalingam, M., Martínez-Mayorga, K., Brown, M.F. & Vogel, R. Proc. Natl. Acad. Sci. USA 105, 17795–17800 (2008).

    Article  CAS  Google Scholar 

  12. Struts, A.V. et al. J. Mol. Biol. 372, 50–66 (2007).

    Article  CAS  Google Scholar 

  13. Brown, M.F. Chem. Phys. Lipids 73, 159–180 (1994).

    Article  CAS  Google Scholar 

  14. Verdegem, P.J.E., Bovee-Geurts, P.H.M., de Grip, W.J., Lugtenburg, J. & de Groot, H.J.M. Biochemistry 38, 11316–11324 (1999).

    Article  CAS  Google Scholar 

  15. Spooner, P.J.R. et al. Biochemistry 42, 13371–13378 (2003).

    Article  CAS  Google Scholar 

  16. Kukura, P., McCamant, D.W., Yoon, S., Wandschneider, D.B. & Mathies, R.A. Science 310, 1006–1009 (2005).

    Article  CAS  Google Scholar 

  17. Copié, V. et al. Biochemistry 33, 3280–3286 (1994).

    Article  Google Scholar 

  18. Borhan, B., Souto, M.L., Imai, H., Shichida, Y. & Nakanishi, K. Science 288, 2209–2212 (2000).

    Article  CAS  Google Scholar 

  19. Park, J.H., Scheerer, P., Hofmann, K.P., Choe, H.-W. & Ernst, O.P. Nature 454, 183–188 (2008).

    Article  CAS  Google Scholar 

  20. Ernst, O.P., Gramse, V., Kolbe, M., Hofmann, K.P. & Heck, M. Proc. Natl. Acad. Sci. USA 104, 10859–10864 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T.A. Cross, K.P. Hofmann, M. Hong, W.L. Hubbell, L.E. Kay, S.O. Smith and R.W. Pastor for discussions. Retinal was provided by K. Tanaka, S. Krane and K. Nakanishi (Columbia University). Financial support from the US National Institutes of Health (EY012049 and EY018891) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

A.V.S. and M.F.B. designed the research. A.V.S. and G.F.J.S. performed the experiments. A.V.S., G.F.J.S., and K.M.-M. analyzed the data. A.V.S. and M.F.B. wrote the paper.

Corresponding author

Correspondence to Michael F Brown.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1 and 2 (PDF 3111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Struts, A., Salgado, G., Martínez-Mayorga, K. et al. Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation. Nat Struct Mol Biol 18, 392–394 (2011). https://doi.org/10.1038/nsmb.1982

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1982

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing