Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

One SNARE complex is sufficient for membrane fusion

Abstract

In eukaryotes, most intracellular membrane fusion reactions are mediated by the interaction of SNARE proteins that are present in both fusing membranes. However, the minimal number of SNARE complexes needed for membrane fusion is not known. Here we show unambiguously that one SNARE complex is sufficient for membrane fusion. We performed controlled in vitro Förster resonance energy transfer (FRET) experiments and found that liposomes bearing only a single SNARE molecule are still capable of fusion with other liposomes or with purified synaptic vesicles. Furthermore, we demonstrated that multiple SNARE complexes do not act cooperatively, showing that synergy between several SNARE complexes is not needed for membrane fusion. Our findings shed new light on the mechanism of SNARE-mediated membrane fusion and call for a revision of current views of fusion events such as the fast release of neurotransmitters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the SNARE-containing liposomes.
Figure 2: SNARE distribution over the liposomes.
Figure 3: Bulk lipid mixing as a function of SNARE density.
Figure 4: Liposomes containing a single SNARE participate in membrane fusion.
Figure 5: Fusion with purified synaptic vesicles, content mixing and lipid mixing as a function of liposome concentration.
Figure 6: Formation of SNARE complexes, monitored using C-terminal FRET.

Similar content being viewed by others

References

  1. Brunger, A.T., Weninger, K., Bowen, M. & Chu, S. Single-molecule studies of the neuronal SNARE fusion machinery. Annu. Rev. Biochem. 78, 903–928 (2009).

    Article  CAS  Google Scholar 

  2. Jahn, R. & Scheller, R.H. SNAREs-engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006).

    Article  CAS  Google Scholar 

  3. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  4. Liu, W. et al. Single molecule mechanical probing of the SNARE protein interactions. Biophys. J. 91, 744–758 (2006).

    Article  CAS  Google Scholar 

  5. Bowen, M.E., Weninger, K., Brunger, A.T. & Chu, S. Single molecule observation of liposome-bilayer fusion thermally induced by SNAREs. Biophys. J. 87, 3569–3584 (2004).

    Article  CAS  Google Scholar 

  6. Hua, Y. & Scheller, R.H. Three SNARE complexes cooperate to mediate membrane fusion. Proc. Natl. Acad. Sci. USA 98, 8065–8070 (2001).

    Article  CAS  Google Scholar 

  7. Keller, J.E., Cai, F. & Neale, E.A. Uptake of botulinum neurotoxin into cultured neurons. Biochemistry 43, 526–532 (2004).

    Article  CAS  Google Scholar 

  8. Han, X., Wang, C.T., Bai, J., Chapman, E.R. & Jackson, M.B. Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304, 289–292 (2004).

    Article  CAS  Google Scholar 

  9. Montecucco, C., Schiavo, G. & Pantano, S. SNARE complexes and neuroexocytosis: how many, how close? Trends Biochem. Sci. 30, 367–372 (2005).

    Article  CAS  Google Scholar 

  10. Pobbati, A.V., Stein, A. & Fasshauer, D. N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313, 673–676 (2006).

    Article  CAS  Google Scholar 

  11. Cypionka, A. et al. Discrimination between docking and fusion of liposomes reconstituted with neuronal SNARE-proteins using FCS. Proc. Natl. Acad. Sci. USA 106, 18575–18580 (2009).

    Article  CAS  Google Scholar 

  12. Margittai, M., Fasshauer, D., Pabst, S., Jahn, R. & Langen, R. Homo- and heterooligomeric SNARE complexes studied by site-directed spin labeling. J. Biol. Chem. 276, 13169–13177 (2001).

    Article  CAS  Google Scholar 

  13. Fasshauer, D. & Margittai, M. A transient N-terminal interaction of SNAP-25 and syntaxin nucleates SNARE assembly. J. Biol. Chem. 279, 7613–7621 (2004).

    Article  CAS  Google Scholar 

  14. Parlati, F. et al. Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc. Natl. Acad. Sci. USA 96, 12565–12570 (1999).

    Article  CAS  Google Scholar 

  15. Siddiqui, T.J. et al. Determinants of synaptobrevin regulation in membranes. Mol. Biol. Cell 18, 2037–2046 (2007).

    Article  CAS  Google Scholar 

  16. Boukobza, E., Sonnenfeld, A. & Haran, G. Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy. J. Phys. Chem. B 105, 12165–12170 (2001).

    Article  CAS  Google Scholar 

  17. Das, S.K., Darshi, M., Cheley, S., Wallace, M.I. & Bayley, H. Membrane protein stoichiometry determined from the step-wise photobleaching of dye-labeled subunits. ChemBioChem 8, 994–999 (2007).

    Article  CAS  Google Scholar 

  18. van den Bogaart, G. et al. Dual-color fluorescence-burst analysis to study pore formation and protein-protein interactions. Methods 46, 123–130 (2008).

    Article  CAS  Google Scholar 

  19. Kucerka, N., Tristram-Nagle, S. & Nagle, J.F. Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J. Membr. Biol. 208, 193–202 (2005).

    Article  CAS  Google Scholar 

  20. Woodbury, D.J. & Rognlien, K. The t-SNARE syntaxin is sufficient for spontaneous fusion of synaptic vesicles to planar membranes. Cell Biol. Int. 24, 809–818 (2000).

    Article  CAS  Google Scholar 

  21. Holt, M., Riedel, D., Stein, A., Schuette, C. & Jahn, R. Synaptic vesicles are constitutively active fusion machines that function independently of Ca2+. Curr. Biol. 18, 715–722 (2008).

    Article  CAS  Google Scholar 

  22. Kendall, D.A. & MacDonald, R.C. Characterization of a fluorescence assay to monitor changes in the aqueous volume of lipid vesicles. Anal. Biochem. 134, 331926–331983 (1983).

    Article  Google Scholar 

  23. van den Bogaart, G., Guzmán, J.V., Mika, J.T. & Poolman, B. On the mechanism of pore formation by melittin. J. Biol. Chem. 283, 33854–33857 (2008).

    Article  CAS  Google Scholar 

  24. Wiederhold, K. & Fasshauer, D. Is assembly of the SNARE complex enough to fuel membrane fusion? J. Biol. Chem. 284, 13143–13152 (2009).

    Article  CAS  Google Scholar 

  25. Li, F. et al. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat. Struct. Mol. Biol. 14, 890–896 (2007).

    Article  CAS  Google Scholar 

  26. Liu, W., Montana, V., Parpura, V. & Mohideen, U. Comparative energy measurements in single molecule interactions. Biophys. J. 95, 419–425 (2008).

    Article  CAS  Google Scholar 

  27. Yersin, A. et al. Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy. Proc. Natl. Acad. Sci. USA 100, 8736–8741 (2003).

    Article  CAS  Google Scholar 

  28. Kozlovsky, Y. & Kozlov, M.M. Stalk model of membrane fusion: solution of energy crisis. Biophys. J. 82, 882–895 (2002).

    Article  CAS  Google Scholar 

  29. Siegel, D.P. & Kozlov, M.M. The Gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. Biophys. J. 87, 366–374 (2004).

    Article  CAS  Google Scholar 

  30. Hui, E., Johnson, C.P., Yao, J., Dunning, F.M. & Chapman, E.R. Synaptotagmin-mediated bending of the target membrane is a critical step in Ca2+-regulated fusion. Cell 138, 709–721 (2009).

    Article  CAS  Google Scholar 

  31. Bethani, I. et al. Endosomal fusion upon SNARE knockdown is maintained by residual SNARE activity and enhanced docking. Traffic 10, 1543–1559 (2009).

    Article  CAS  Google Scholar 

  32. Wickner, W. Yeast vacuoles and membrane fusion pathways. EMBO J. 21, 1241–1247 (2002).

    Article  CAS  Google Scholar 

  33. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  Google Scholar 

  34. Sieber, J.J. et al. Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317, 1072–1076 (2007).

    Article  CAS  Google Scholar 

  35. Wienisch, M. & Klingauf, J. Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical. Nat. Neurosci. 9, 1019–1027 (2006).

    Article  CAS  Google Scholar 

  36. Littleton, J.T. et al. Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron 21, 401–413 (1998).

    Article  CAS  Google Scholar 

  37. Schuette, C.G. et al. Determinants of liposome fusion mediated by synaptic SNARE proteins. Proc. Natl. Acad. Sci. USA 101, 2858–2863 (2004).

    Article  CAS  Google Scholar 

  38. Chung, S.H. & Kennedy, R.A. Forward-backward non-linear filtering technique for extracting small biological signals from noise. J. Neurosci. Methods 40, 71–86 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Druminski, A. Stein and U. Ries for technical support and L.K. Tamm and coworkers for critical comments. This work was supported by grants from the US National Institutes of Health (P01 GM072694) and the Deutsche Forschungsgemeinschaft (SFB803). G.v.d.B. is financed by the Human Frontier Science Program. G.B. is financed by the Deutsche Forschungsgemeinschaft (EXC171).

Author information

Authors and Affiliations

Authors

Contributions

G.v.d.B. purified the proteins, designed, performed and analyzed the FRET and sequential photobleaching experiments, and programmed the software for the data analysis. M.G.H. purified the synaptic vesicles and performed the partial proteolysis and flotation experiments. G.B. and F.S.W. assisted with the microscopy. D.R. performed the electron microscopy. G.v.d.B. and R.J. designed the study and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Reinhard Jahn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Bogaart, G., Holt, M., Bunt, G. et al. One SNARE complex is sufficient for membrane fusion. Nat Struct Mol Biol 17, 358–364 (2010). https://doi.org/10.1038/nsmb.1748

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1748

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing