Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a membrane tethering complex incorporating multiple SNAREs

Abstract

Most membrane fusion reactions in eukaryotic cells are mediated by multisubunit tethering complexes (MTCs) and SNARE proteins. MTCs are much larger than SNAREs and are thought to mediate the initial attachment of two membranes. Complementary SNAREs then form membrane-bridging complexes whose assembly draws the membranes together for fusion. Here we present a cryo-electron microscopy structure of the simplest known MTC, the 255-kDa Dsl1 complex of Saccharomyces cerevisiae, bound to the two SNAREs that anchor it to the endoplasmic reticulum. N-terminal domains of the SNAREs form an integral part of the structure, stabilizing a Dsl1 complex configuration with unexpected similarities to the 850-kDa exocyst MTC. The structure of the SNARE-anchored Dsl1 complex and its comparison with exocyst reveal what are likely to be common principles underlying MTC function. Our structure also implies that tethers and SNAREs can work together as a single integrated machine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Dsl1 complex bound to Sec20 and Use1.
Fig. 2: Structure of Dsl1:Qb:Qc.
Fig. 3: Use1:Sec39 binds Sec20:Tip20 via inter-SNARE interactions.
Fig. 4: SNARE incorporation into Dsl1:Qb:Qc is essential in yeast.
Fig. 5: Comparison of Dsl1:Qb:Qc and exocyst.
Fig. 6: Model for retrograde vesicle capture by Dsl1:Qb:Qc.

Similar content being viewed by others

Data availability

Structural coordinates for Dsl1:Qb:Qc were deposited in the PDB with the accession code 8EKI. The cryo-EM density maps were deposited in the Electron Microscopy Data Bank with accession numbers EMD-28204 (composite map), EMD-29447, EMD-28760, EMD-28768, EMD-28762 (local refinement maps) and EMD-28774 (pre-local-refinement consensus map). The updated K. lactis Use1:Sec39:Dsl1 X-ray structure was deposited in the PDB with the accession code 8FTU. Source data are provided with this paper.

References

  1. Ungermann, C. & Kummel, D. Structure of membrane tethers and their role in fusion. Traffic 20, 479–490 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Wickner, W. & Rizo, J. A cascade of multiple proteins and lipids catalyzes membrane fusion. Mol. Biol. Cell 28, 707–711 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baker, R. W. & Hughson, F. M. Chaperoning SNARE assembly and disassembly. Nat. Rev. Mol. Cell Biol. 17, 465–479 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Risselada, H. J. & Mayer, A. SNAREs, tethers and SM proteins: how to overcome the final barriers to membrane fusion? Biochem. J. 477, 243–258 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Whyte, J. R. & Munro, S. Vesicle tethering complexes in membrane traffic. J. Cell Sci. 115, 2627–2637 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Yu, I. M. & Hughson, F. M. Tethering factors as organizers of intracellular vesicular traffic. Annu. Rev. Cell Dev. Biol. 26, 137–156 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. van der Beek, J., Jonker, C., van der Welle, R., Liv, N. & Klumperman, J. CORVET, CHEVI and HOPS—multisubunit tethers of the endo-lysosomal system in health and disease. J. Cell Sci. 132, jcs189134 (2019).

    Article  PubMed  Google Scholar 

  8. Chen, J. et al. Crystal structure of Sec10, a subunit of the exocyst complex. Sci. Rep. 7, 40909 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Dong, G., Hutagalung, A. H., Fu, C., Novick, P. & Reinisch, K. M. The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif. Nat. Struct. Mol. Biol. 12, 1094–1100 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Ha, J. Y. et al. Cog5–Cog7 crystal structure reveals interactions essential for the function of a multisubunit tethering complex. Proc. Natl Acad. Sci. USA 111, 15762–15767 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Mei, K. et al. Cryo-EM structure of the exocyst complex. Nat. Struct. Mol. Biol. 25, 139–146 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Richardson, B. C. et al. Structural basis for a human glycosylation disorder caused by mutation of the COG4 gene. Proc. Natl Acad. Sci. USA 106, 13329–13334 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Sivaram, M. V., Furgason, M. L., Brewer, D. N. & Munson, M. The structure of the exocyst subunit Sec6p defines a conserved architecture with diverse roles. Nat. Struct. Mol. Biol. 13, 555–556 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Tripathi, A., Ren, Y., Jeffrey, P. D. & Hughson, F. M. Structural characterization of Tip20p and Dsl1p, subunits of the Dsl1p vesicle tethering complex. Nat. Struct. Mol. Biol. 16, 114–123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vasan, N., Hutagalung, A., Novick, P. & Reinisch, K. M. Structure of a C-terminal fragment of its Vps53 subunit suggests similarity of Golgi-associated retrograde protein (GARP) complex to a family of tethering complexes. Proc. Natl Acad. Sci. USA 107, 14176–14181 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Wu, S., Mehta, S. Q., Pichaud, F., Bellen, H. J. & Quiocho, F. A. Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat. Struct. Mol. Biol. 12, 879–885 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Pashkova, N., Jin, Y., Ramaswamy, S. & Weisman, L. S. Structural basis for myosin V discrimination between distinct cargoes. EMBO J. 25, 693–700 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, X. et al. Syntaxin opening by the MUN domain underlies the function of Munc13 in synaptic-vesicle priming. Nat. Struct. Mol. Biol. 22, 547–554 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Whyte, J. R. & Munro, S. The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev. Cell 1, 527–537 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Lepore, D. M., Martinez-Nunez, L. & Munson, M. Exposing the elusive exocyst structure. Trends Biochem. Sci. 43, 714–725 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schmitt, H. D. Dsl1p/Zw10: common mechanisms behind tethering vesicles and microtubules. Trends Cell Biol. 20, 257–268 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Spang, A. The DSL1 complex: the smallest but not the least CATCHR. Traffic 13, 908–913 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Ren, Y. et al. A structure-based mechanism for vesicle capture by the multisubunit tethering complex Dsl1. Cell 139, 1119–1129 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Andag, U., Neumann, T. & Schmitt, H. D. The coatomer-interacting protein Dsl1p is required for Golgi-to-endoplasmic reticulum retrieval in yeast. J. Biol. Chem. 276, 39150–39160 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Cosson, P. et al. The Sec20/Tip20p complex is involved in ER retrieval of dilysine-tagged proteins. Eur. J. Cell Biol. 73, 93–97 (1997).

    CAS  PubMed  Google Scholar 

  26. Kraynack, B. A. et al. Dsl1p, Tip20p, and the novel Dsl3(Sec39) protein are required for the stability of the Q/t-SNARE complex at the endoplasmic reticulum in yeast. Mol. Biol. Cell 16, 3963–3977 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reilly, B. A., Kraynack, B. A., VanRheenen, S. M. & Waters, M. G. Golgi-to-endoplasmic reticulum (ER) retrograde traffic in yeast requires Dsl1p, a component of the ER target site that interacts with a COPI coat subunit. Mol. Biol. Cell 12, 3783–3796 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Andag, U. & Schmitt, H. D. Dsl1p, an essential component of the Golgi–endoplasmic reticulum retrieval system in yeast, uses the same sequence motif to interact with different subunits of the COPI vesicle coat. J. Biol. Chem. 278, 51722–51734 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Sweet, D. J. & Pelham, H. R. The TIP1 gene of Saccharomyces cerevisiae encodes an 80 kDa cytoplasmic protein that interacts with the cytoplasmic domain of Sec20p. EMBO J. 12, 2831–2840 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jahn, R. & Scheller, R. H. SNAREs-engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Kloepper, T. H., Kienle, C. N. & Fasshauer, D. An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol. Biol. Cell 18, 3463–3471 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, Y. & Hughson, F. M. Chaperoning SNARE folding and assembly. Annu. Rev. Biochem. 90, 581–603 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 angstrom resolution. Nature 395, 347–353 (1998).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Fasshauer, D., Eliason, W. K., Brunger, A. T. & Jahn, R. Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. Biochemistry 37, 10354–10362 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Gao, Y. et al. Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337, 1340–1343 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Munson, M., Chen, X., Cocina, A. E., Schultz, S. M. & Hughson, F. M. Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly. Nat. Struct. Biol. 7, 894–902 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Tochio, H., Tsui, M. M., Banfield, D. K. & Zhang, M. An autoinhibitory mechanism for nonsyntaxin SNARE proteins revealed by the structure of Ykt6p. Science 293, 698–702 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Miller, S. E., Collins, B. M., McCoy, A. J., Robinson, M. S. & Owen, D. J. A SNARE–adaptor interaction is a new mode of cargo recognition in clathrin-coated vesicles. Nature 450, 570–574 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Travis, S. M. et al. Structural basis for the binding of SNAREs to the multisubunit tethering complex Dsl1. J. Biol. Chem. 295, 10125–10135 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

  41. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Rogers, J. V., McMahon, C., Baryshnikova, A., Hughson, F. M. & Rose, M. D. ER-associated retrograde SNAREs and the Dsl1 complex mediate an alternative, Sey1p-independent homotypic ER fusion pathway. Mol. Biol. Cell 25, 3401–3412 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Travis, S. M., Kokona, B., Fairman, R. & Hughson, F. M. Roles of singleton tryptophan motifs in COPI coat stability and vesicle tethering. Proc. Natl Acad. Sci. USA 116, 24031–24040 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Zink, S., Wenzel, D., Wurm, C. A. & Schmitt, H. D. A link between ER tethering and COP-I vesicle uncoating. Dev. Cell 17, 403–416 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Abascal-Palacios, G., Schindler, C., Rojas, A. L., Bonifacino, J. S. & Hierro, A. Structural basis for the interaction of the Golgi-Associated Retrograde Protein Complex with the t-SNARE Syntaxin 6. Structure 21, 1698–1706 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Antonin, W. et al. The N-terminal domains of syntaxin 7 and vti1b form three-helix bundles that differ in their ability to regulate SNARE complex assembly. J. Biol. Chem. 277, 36449–36456 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Dulubova, I., Yamaguchi, T., Wang, Y., Südhof, T. C. & Rizo, J. Vam3p structure reveals conserved and divergent properties of syntaxins. Nat. Struct. Biol. 8, 258–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Fridmann-Sirkis, Y., Kent, H. M., Lewis, M. J., Evans, P. R. & Pelham, H. R. Structural analysis of the interaction between the SNARE Tlg1 and Vps51. Traffic 7, 182–190 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, J. et al. Epsin N-terminal homology domains bind on opposite sides of two SNAREs. Proc. Natl Acad. Sci. USA 108, 12277–12282 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Südhof, T. C. & Rothman, J. E. Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477 (2009).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  52. Humphreys, I. R. et al. Computed structures of core eukaryotic protein complexes. Science 374, eabm4805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dubuke, M. L., Maniatis, S., Shaffer, S. A. & Munson, M. The exocyst subunit Sec6 interacts with assembled exocytic SNARE complexes. J. Biol. Chem. 290, 28245–28256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Morgera, F. et al. Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1. Mol. Biol. Cell 23, 337–346 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Suckling, R. J. et al. Structural basis for the binding of tryptophan-based motifs by delta-COP. Proc. Natl Acad. Sci. USA 112, 14242–14247 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Guo, W., Roth, D., Walch-Solimena, C. & Novick, P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 18, 1071–1080 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chou, H. T., Dukovski, D., Chambers, M. G., Reinisch, K. M. & Walz, T. CATCHR, HOPS and CORVET tethering complexes share a similar architecture. Nat. Struct. Mol. Biol. 23, 761–763 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ha, J. Y. et al. Molecular architecture of the complete COG tethering complex. Nat. Struct. Mol. Biol. 23, 758–760 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rossi, G. et al. Exocyst structural changes associated with activation of tethering downstream of Rho/Cdc42 GTPases. J. Cell Biol. 219, e201904161 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Heider, M. R. et al. Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex. Nat. Struct. Mol. Biol. 23, 59–66 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Baker, R. W. et al. A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly. Science 349, 1111–1114 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  62. Jiao, J. et al. Munc18-1 catalyzes neuronal SNARE assembly by templating SNARE association. eLife 7, e41771 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Shvarev, D. et al. Structure of the HOPS tethering complex, a lysosomal membrane fusion machinery. eLife 11, e80901 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, F. et al. The role of the hypervariable C-terminal domain in Rab GTPases membrane targeting. Proc. Natl Acad. Sci. USA 111, 2572–2577 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  65. Ganesan, S. J. et al. Integrative structure and function of the yeast exocyst complex. Protein Sci. 29, 1486–1501 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Peer, M. et al. Double NPY motifs at the N-terminus of the yeast t-SNARE Sso2 synergistically bind Sec3 to promote membrane fusion. eLife 11, e82041 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yue, P. et al. Sec3 promotes the initial binary t-SNARE complex assembly and membrane fusion. Nat. Commun. 8, 14236 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  68. Shen, D. et al. The synaptobrevin homologue Snc2p recruits the exocyst to secretory vesicles by binding to Sec6p. J. Cell Biol. 202, 509–526 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Scheich, C., Kümmel, D., Soumailakakis, D., Heinemann, U. & Büssow, K. Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Res. 35, e43 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  75. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

We thank X. Fan, P. Shao, V. Vandavasi and members of the Hughson laboratory past and present for helpful advice and discussion. We are grateful to the Princeton University Biophysics and Macromolecular Crystallography core facilities for technical assistance. We acknowledge the use of Princeton’s Imaging and Analysis Center (IAC), which is partially supported by the Princeton Center for Complex Materials (PCCM), a National Science Foundation (NSF) Materials Research Science and Engineering Center (MRSEC, DMR-2011750). This work was supported by National Institutes of Health grants R01GM071574 (F.M.H.), T32GM007388 (K.A.D., A.E.S., J.D.S. and S.M.T.) and F31GM12676 (S.M.T.).

Author information

Authors and Affiliations

Authors

Contributions

K.A.D. performed the structural experiments and the in vivo functional analysis. K.A.D. and A.E.S. performed the biochemical experiments. K.A.D., S.M.T., P.D.J. and F.M.H. analyzed the structural data. K.A.D. and J.D.S. computed the AF predictions. K.A.D. and F.M.H. designed the research and wrote the paper with input from A.E.S., J.D.S., S.M.T. and P.D.J.

Corresponding author

Correspondence to Frederick M. Hughson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Katarzyna Ciazynska, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Representative cryo-EM images.

a, Representative cryo-EM micrograph of Dsl1:Qb:Qc prepared as described in Methods. Individual Dsl1:Qb:Qc particles have been marked with white circles. 5,857 micrographs were collected. b, Representative 2D class averages of the Dsl1:Qb:Qc complex used in the construction of the cryo-EM density. Classes were generated using cryoSPARC.

Extended Data Fig. 2 Workflow of cryo-EM data processing pre-local refinement.

a, Flowchart describing the training of the template picker used in the initial EM map determination of the Dsl1:Qb:Qc complex. b, Flowchart describing the method for generating an initial 3D model of Dsl1:Qb:Qc to use for density-guided template picking. c, Flowchart describing the method for generating a pre-local-refinement EM map of Dsl1:Qb:Qc using a template picker trained on the 8.0 Ã… map generated in (b). The EM map is inverted relative to the final map.

Extended Data Fig. 3 Local refinement of the Dsl1:Qb:Qc complex.

a, Output from Non-Uniform Refinement that was used for mask generation and local refinement. b, Angular distribution of the consensus map. c, GS-FSC curve of the consensus map. d, Flowchart describing the masking process for local refinement of the EM map. Four separate masks were applied, covering approximately half of the complex in four different orientations. At the outset of this process, the EM map was inverted by non-uniform refinement. Local refinement was performed on both the inverted and corrected EM map, and the higher-resolution output was used in the final composite map. e, GS-FSC curve of the composite EM map of the Dsl1:Qb:Qc complex. The curve was generated by combining the half maps from each of the four local refinement jobs and processing with the Validation (FSC) tool in cryoSPARC.

Extended Data Fig. 4 Local resolution of the Dsl1:Qb:Qc complex cryo-EM map.

a, Local refinement map generated from Mask 1 colored by local resolution from two different viewing angles. The map is superimposed on an outline of the complete Dsl1:Qb:Qc complex at a lower contour level for reference. b, Local refinement map generated from Mask 2 colored by local resolution. c, Local refinement map generated from Mask 3 colored by local resolution. d, Local refinement map generated from Mask 4 colored by local resolution.

Extended Data Fig. 5 Crystallographic and Alphafold (AF) contributions to the Dsl1:Qb:Qc complex model.

a, Model of the Dsl1:Qb:Qc complex surrounded by an outline of the EM map. Each of the crystal structures (denoted with PDB codes) and AF predictions used in the modeling process are also shown with their relative location specified. b, Dsl1ΔN (356-754) was generated by AF to supplement the available crystallographic data. Dsl1ΔN (excluding the lasso 378-488) is overlaid onto the outline of the cryo-EM density of the Dsl1:Qb:Qc complex, to demonstrate fit. c, Sec39 (1-100), generated by AF, is overlaid onto the outline of the cryo-EM density of the Dsl1:Qb:Qc complex, to demonstrate fit. d, The N-terminal domains of Dsl1 and Tip20 interact directly. The AF-predicted interface of Dsl1 and Tip20 is overlaid onto the outline of the cryo-EM density of the Dsl1:Qb:Qc complex, to demonstrate fit. e, AF was used to model K. lactis Use1 bound to Sec39, and the resulting prediction was fit into our previously reported electron density map (6WC4). In the resulting model (8FTU), the position of Use1 is the same, but the orientation is flipped, agreeing well with the orientation we observe for S. cerevisiae Use1 bound to Sec39.

Extended Data Fig. 6 Statistics on AF contributions to the Dsl1:Qb:Qc complex model.

a, Table listing AF predictions utilized in the model building process of the Dsl1:Qb:Qc complex. Left: protein name and residues included in the AF job. Center: depiction of the Rank_0 model generated by AF, colored by pLDDT values. Dsl1 (378-488) and Sec20 (38-65), though depicted, were not used in the modeling process as there was no corresponding density for these regions. Right: statistics on the AF jobs. pLDDT was calculated by averaging the score of each residue in a given job used in the final model. pTM (for monomeric jobs) and pTM+ipTM (for multimeric jobs) were extracted from AF directly. CC fit was generated in ChimeraX at the local resolution of the fitted portion of the map. b, Predicted aligned error (PAE) graph generated by AF for Dsl1 (344-754). Green indicates a lower distance error for a given residue pair. c, PAE graph generated by AF for Sec39 (1-112). d, PAE graph generated by AF for Dsl1 (1-131), Tip20 (1-66). e, PAE graph generated by AF for Sec20 (1-184), Use1 (2-86).

Extended Data Fig. 7 Mutations in Sec20 and Use1 that abolish SNARE-SNARE binding do not affect protein migration on size-exclusion chromatography.

a, His7-Use1 (1-212):Sec39 migrates with a similar profile to His7-Use1 (1-212) (L34A, F46A, F58A):Sec39 on size-exclusion chromatography. b, Sec20-His7 (1-275):Tip20 migrates with a similar profile to Sec20-His7 (1-275) (D129R, L132R, D136R):Tip20. Data presented in this figure are identical to data presented in Fig. 3.

Extended Data Fig. 8 Mutations designed to disrupt tether:SNARE interactions abolish binding in vitro.

a, His7-Sec39 pulls down Use1 (1-212). b, His7-Sec39 does not pull down mutant Use1 (1-212) (F9A, V13A). c, His7-Tip20 pulls down Sec20 (1-275). d, His7-Tip20 does not pull down Sec20 (1-275) (C79R, V82R, Y86A). Each experiment was performed twice.

Source data

Supplementary information

Reporting Summary

Supplementary Video 1

3DVA of the Dsl1:Qb:Qc complex.

Source data

Source Data Fig. 1

Unprocessed SDS–PAGE gel.

Source Data Fig. 3

Unprocessed SDS–PAGE gels.

Source Data Extended Data Fig. 8

Unprocessed SDS–PAGE gels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DAmico, K.A., Stanton, A.E., Shirkey, J.D. et al. Structure of a membrane tethering complex incorporating multiple SNAREs. Nat Struct Mol Biol 31, 246–254 (2024). https://doi.org/10.1038/s41594-023-01164-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-01164-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing