Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Est3 protein associates with yeast telomerase through an OB-fold domain

Abstract

The Ever shorter telomeres 3 (Est3) protein is a small regulatory subunit of yeast telomerase which is dispensable for enzyme catalysis but essential for telomere replication in vivo. Using structure prediction combined with in vivo characterization, we show here that Est3 consists of a predicted OB (oligosaccharide/oligonucleotide binding)-fold. We used mutagenesis of predicted surface residues to generate a functional map of one surface of Est3, identifying a site that mediates association with the telomerase complex. Unexpectedly, the predicted OB-fold of Est3 is structurally similar to the OB-fold of the human TPP1 protein, despite the fact that Est3 and TPP1, as components of telomerase and a telomere-capping complex, respectively, perform functionally distinct tasks at chromosome ends. Our analysis of Est3 may be instructive in generating comparable missense mutations on the surface of the OB-fold domain of TPP1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Est3 is an OB-fold–containing protein with structural similarity to the OB-fold of TPP1.
Figure 2: Residues that are conserved between Est3 and Tpp1 are located in the core of the OB-fold.
Figure 3: Detailed phenotypic analysis of mutations in predicted surface residues of Est3.
Figure 4: An interaction surface on one face of the OB-fold mediates association of Est3 with the telomerase enzyme.

Similar content being viewed by others

References

  1. Garcia, C.K., Wright, W.E. & Shay, J.W. Human diseases of telomerase dysfunction: insights into tissue aging. Nucleic Acids Res. 35, 7406–7416 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Singer, M.S. & Gottschling, D.E. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 404–409 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Lingner, J. et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561–567 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Hughes, T.R., Evans, S.K., Weilbaecher, R.G. & Lundblad, V. The Est3 protein is a subunit of yeast telomerase. Curr. Biol. 10, 809–812 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Zappulla, D.C. & Cech, T.R. Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc. Natl. Acad. Sci. USA 101, 10024–10029 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Lendvay, T.S., Morris, D.K., Sah, J., Balasubramanian, B. & Lundblad, V. Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144, 1399–1412 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cohn, M. & Blackburn, E.H. Telomerase in yeast. Science 269, 396–400 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Lingner, J., Cech, T.R., Hughes, T.R. & Lundblad, V. Three Ever Shorter Telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc. Natl. Acad. Sci. USA 94, 11190–11195 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Beernink, H.T., Miller, K., Deshpande, A., Bucher, P. & Cooper, J.P. Telomere maintenance in fission yeast requires an Est1 ortholog. Curr. Biol. 13, 575–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Leonardi, J., Box, J.A., Bunch, J.T. & Baumann, P. TER1, the RNA subunit of fission yeast telomerase. Nat. Struct. Mol. Biol. 15, 26–33 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Livengood, A.J., Zaug, A.J. & Cech, T.R. Essential regions of Saccharomyces cerevisiae telomerase RNA: separate elements for Est1p and Est2p interaction. Mol. Cell. Biol. 22, 2366–2374 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seto, A.G., Livengood, A.J., Tzfati, Y., Blackburn, E.H. & Cech, T.R. A bulged stem tethers Est1p to telomerase RNA in budding yeast. Genes Dev. 16, 2800–2812 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Webb, C.J. & Zakian, V.A. Identification and characterization of the Schizosaccharomyces pombe TER1 telomerase RNA. Nat. Struct. Mol. Biol. 15, 34–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Nugent, C.I., Hughes, T.R., Lue, N.F. & Lundblad, V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Pennock, E., Buckley, K. & Lundblad, V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104, 387–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Bianchi, A., Negrini, S. & Shore, D. Delivery of yeast telomerase to a DNA break depends on the recruitment functions of Cdc13 and Est1. Mol. Cell 16, 139–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Bianchi, A. & Shore, D. Increased association of telomerase with short telomeres in yeast. Genes Dev. 21, 1726–1730 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Teixeira, M.T., Arneric, M., Sperisen, P. & Lingner, J. Telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states. Cell 117, 323–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Taggart, A.K., Teng, S.C. & Zakian, V.A. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297, 1023–1026 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Friedman, K.L., Heit, J.J., Long, D.M. & Cech, T.R. N-terminal domain of yeast telomerase reverse transcriptase: recruitment of Est3p to the telomerase complex. Mol. Biol. Cell 14, 1–13 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hsu, M., Yu, E.Y., Singh, S.M. & Lue, N.F. Mutual dependence of Candida albicans Est1p and Est3p in telomerase assembly and activation. Eukaryot. Cell 6, 1330–1338 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Osterhage, J.L., Talley, J.M. & Friedman, K.L. Proteasome-dependent degradation of Est1p regulates the cell cycle-restricted assembly of telomerase in Saccharomyces cerevisiae. Nat. Struct. Mol. Biol. 13, 720–728 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Fang, G.W. & Cech, T.R. Molecular cloning of telomere-binding protein genes from Stylonychia mytilis. Nucleic Acids Res. 19, 5515–5518 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gray, J.T., Celander, D.W., Price, C.M. & Cech, T.R. Cloning and expression of genes for the Oxytricha telomere-binding protein: specific subunit interactions in the telomeric complex. Cell 67, 807–814 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Baumann, P. & Cech, T.R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Ye, J.Z. et al. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev. 18, 1649–1654 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, D. et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nat. Cell Biol. 6, 673–680 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Houghtaling, B.R., Cuttonaro, L., Chang, W. & Smith, S. A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr. Biol. 14, 1621–1631 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Churikov, D., Wei, C. & Price, C.M. Vertebrate POT1 restricts G-overhang length and prevents activation of a telomeric DNA damage checkpoint but is dispensable for overhang protection. Mol. Cell. Biol. 26, 6971–6982 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jacob, N.K., Lescasse, R., Linger, B.R. & Price, C.M. Tetrahymena POT1a regulates telomere length and prevents activation of a cell cycle checkpoint. Mol. Cell. Biol. 27, 1592–1601 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Hockemeyer, D. et al. Telomere protection by mammalian Pot1 requires interaction with Tpp1. Nat. Struct. Mol. Biol. 14, 754–761 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Guo, X. et al. Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J. 26, 4709–4719 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Else, T. et al. Tpp1/Acd maintains genomic stability through a complex role in telomere protection. Chromosome Res. 15, 1001–1013 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Miyoshi, T., Kanoh, J., Saito, M. & Ishikawa, F. Fission yeast Pot1-Tpp1 protects telomeres and regulates telomere length. Science 320, 1341–1344 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Morris, D.K. & Lundblad, V. Programmed translational frameshifting in a gene required for yeast telomere replication. Curr. Biol. 7, 969–976 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Singh, S.M., Steinberg-Neifach, O., Mian, I.S. & Lue, N.F. Analysis of telomerase in Candida albicans: potential role in telomere end protection. Eukaryot. Cell 1, 967–977 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang, F. et al. The POT1–TPP1 telomere complex is a telomerase processivity factor. Nature 445, 506–510 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Karplus, K. et al. SAM-T04: what is new in protein-structure prediction for CASP6. Proteins 61, S135–S142 (2005).

    Article  Google Scholar 

  40. Shi, J., Blundell, T.L. & Mizuguchi, K. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310, 243–257 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Horvath, M.P., Schweiker, V.L., Bevilacqua, J.M., Ruggles, J.A. & Schultz, S.C. Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell 95, 963–974 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Evans, S.K. & Lundblad, V. The Est1 subunit of Saccharomyces cerevisiae telomerase makes multiple contributions to telomere length maintenance. Genetics 162, 1101–1115 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Xin, H. et al. TPP1 is a homologue of ciliate TEBP-β and interacts with POT1 to recruit telomerase. Nature 445, 559–562 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Singh, S.M. & Lue, N.F. Ever shorter telomere 1 (EST1)-dependent reverse transcription by Candida telomerase in vitro: evidence in support of an activating function. Proc. Natl. Acad. Sci. USA 100, 5718–5723 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Armougom, F. et al. Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res. 34, W604–W608 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pei, J., Kim, B.H., Tang, M. & Grishin, N.V. PROMALS web server for accurate multiple protein sequence alignments. Nucleic Acids Res. 35, W649–W652 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moretti, S. et al. The M-Coffee web server: a meta-method for computing multiple sequence alignments by combining alternative alignment methods. Nucleic Acids Res. 35, W645–W648 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Holm, L. & Park, J. DaliLite workbench for protein structure comparison. Bioinformatics 16, 566–567 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Ricks and E. Ford for outstanding technical assistance. This research was supported by grant AG11728 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Lundblad.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplmentary Table 1 (PDF 5350 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Mandell, E., Tucey, T. et al. The Est3 protein associates with yeast telomerase through an OB-fold domain. Nat Struct Mol Biol 15, 990–997 (2008). https://doi.org/10.1038/nsmb.1472

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1472

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing