Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular recognition of BMP-2 and BMP receptor IA

This article has been updated

Abstract

Bone morphogenetic protein-2 (BMP-2) and other members of the TGF-β superfamily regulate the development, maintenance and regeneration of tissues and organs. Binding epitopes for these extracellular signaling proteins have been defined, but hot spots specifying binding affinity and specificity have so far not been identified. In this study, mutational and structural analyses show that epitopes of BMP-2 and the BRIA receptor form a new type of protein-protein interface. The main chain atoms of Leu 51 and Asp53 of BMP-2 represent a hot spot of binding to BRIA. The BMP-2 variant L51P was deficient in type I receptor binding only, whereas its overall structure and its binding to type II receptors and modulator proteins, such as noggin, were unchanged. Thus, the L51P substitution converts BMP-2 into a receptor-inactive inhibitor of noggin. These results are relevant for other proteins of the TGF-β superfamily and provide useful clues for structure-based drug design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture of the interaction of BMP-2 and BRIA.
Figure 2: Central hydrogen-bonding network in the interface of BMP-2 and BRIA.
Figure 3: Comparison of BMP-2 bound to BRIA and BMP-2 L51P.
Figure 4: Biological activity of BMP-2 proline variants.
Figure 5: Neutralization of noggin inhibition by BMP-2 proline variant L51P.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 11 April 2004

    Replaces Supp Table 1 file, added note to full text after SI note and on Supp Info index page

Notes

  1. *Note:The original Supplementary Table 1 contained symbol conversion errors and has been replaced with a new file.

References

  1. Shi, Y. & Massague, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Heldin, C.H., Eriksson, U. & Ostman, A. New members of the platelet-derived growth factor family of mitogens. Arch. Biochem. Biophys. 398, 284–290 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Kirsch, T., Nickel, J. & Sebald, W. BMP-2 antagonists emerge from alterations in the low-affinity binding epitope for receptor BMPR-II. Embo J. 19, 3314–3324 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harland, R.M. Developmental biology. A twist on embryonic signalling. Nature 410, 423–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Balemans, W. & Van Hul, W. Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev. Biol. 250, 231–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Massague, J. & Chen, Y.G. Controlling TGF-β signaling. Genes Dev. 14, 627–644 (2000).

    CAS  PubMed  Google Scholar 

  7. Garcia Abreu, J., Coffinier, C., Larrain, J., Oelgeschlager, M. & De Robertis, E.M. Chordin-like CR domains and the regulation of evolutionarily conserved extracellular signaling systems. Gene 287, 39–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Groppe, J. et al. Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature 420, 636–642 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Zimmerman, L.B., De Jesus-Escobar, J.M. & Harland, R.M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Kirsch, T., Sebald, W. & Dreyer, M.K. Crystal structure of the BMP-2–BRIA ectodomain complex. Nat. Struct. Biol. 7, 492–496 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Hatta, T. et al. Identification of the ligand-binding site of the BMP type IA receptor for BMP-4. Biopolymers 55, 399–406 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. de Vos, A.M., Ultsch, M. & Kossiakoff, A.A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306–312 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Hage, T., Sebald, W. & Reinemer, P. Crystal structure of the interleukin-4/receptor α chain complex reveals a mosaic binding interface. Cell 97, 271–281 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Syed, R.S. et al. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 395, 511–516 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Boulanger, M.J., Chow, D.C., Brevnova, E.E. & Garcia, K.C. Hexameric structure and assembly of the interleukin-6/IL-6 α-receptor/gp130 complex. Science 300, 2101–2104 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Greenwald, J. et al. The BMP7/ActRII extracellular domain complex provides new insights into the cooperative nature of receptor assembly. Mol. Cell 11, 605–617 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Hart, P.J. et al. Crystal structure of the human TβR2 ectodomain—TGF-β3 complex. Nat. Struct. Biol. 9, 203–208 (2002).

    CAS  PubMed  Google Scholar 

  18. Thompson, T.B., Woodruff, T.K. & Jardetzky, T.S. Structures of an ActRIIB:activin A complex reveal a novel binding mode for TGF-β ligand:receptor interactions. EMBO J. 22, 1555–1566 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McDonald, I.K. & Thornton, J.M. Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238, 777–793 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Xu, D., Tsai, C.J. & Nussinov, R. Hydrogen bonds and salt bridges across protein-protein interfaces. Protein Eng. 10, 999–1012 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Chakrabarti, P. & Janin, J. Dissecting protein-protein recognition sites. Proteins 47, 334–343 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Bogan, A.A. & Thorn, K.S. Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280, 1–9 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Griffith, D.L., Keck, P.C., Sampath, T.K., Rueger, D.C. & Carlson, W.D. Three-dimensional structure of recombinant human osteogenic protein 1: structural paradigm for the transforming growth factor β superfamily. Proc. Natl. Acad. Sci. USA 93, 878–883 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Groppe, J. et al. Structural basis of BMP signaling inhibition by Noggin, a novel twelve-membered cystine knot protein. J. Bone Joint. Surg. Am. 85, 52–58 (2003).

    Article  PubMed  Google Scholar 

  25. Huang, S.S., Zhou, M., Johnson, F.E., Shieh, H.S. & Huang, J.S. An active site of transforming growth factor-β1 for growth inhibition and stimulation. J. Biol. Chem. 274, 27754–27758 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Huang, S.S., Liu, Q., Johnson, F.E., Konish, Y. & Huang, J.S. Transforming growth factor β peptide antagonists and their conversion to partial agonists. J. Biol. Chem. 272, 27155–27159 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Ruppert, R., Hoffmann, E. & Sebald, W. Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Eur. J. Biochem. 237, 295–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Kirsch, T., Nickel, J. & Sebald, W. Isolation of recombinant BMP receptor IA ectodomain and its 2:1 complex with BMP-2. FEBS Lett. 468, 215–219 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Leslie, A.G.W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 ESF-EAMCB Newslett. Protein Crystallogr. 26 (1992).

  30. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  31. Evans, P.R. Data reduction. in Proceedings of CCP4 Study Weekend 114–122 (CLRC Daresbury Laboratory, Daresbury, UK, 1993).

    Google Scholar 

  32. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Brunger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Kraulis, P.J. Molscript—a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallog. 24, 946–950 (1991).

    Article  Google Scholar 

  36. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Esnouf, R.M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Gottermeier and C. Söder for excellent technical assistance; M. Klein for help during data acquisition; M. Buehner for helpful discussions and advice; and D. Heinz and W. Schubert (Gesellschaft für Biotechnologische Forschung, GbF Braunschweig) for providing access to their X-ray diffraction equipment. The authors also thank C. Schulze-Briese and T. Tomizaki from Swiss Light Source for assistance during data acquisition and would like to acknowledge their access to the synchrotron radiation beamline X06SA at the Swiss Light Source (SLS), Switzerland. This project was supported by the Deutsche Forschungsgemeinschaft (DFG), SFB 487 TP B1 and B2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D Mueller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1 (PDF 99 kb)

Supplementary Fig. 2 (PDF 20 kb)

Supplementary Table 1

*Note:The original Supplementary Table 1 contained symbol conversion errors and has been replaced with a new file. (PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, S., Nickel, J., Zhang, JL. et al. Molecular recognition of BMP-2 and BMP receptor IA. Nat Struct Mol Biol 11, 481–488 (2004). https://doi.org/10.1038/nsmb756

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb756

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing