Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer/testis antigens and urological malignancies

Abstract

Cancer/testis antigens (CTAs) are a group of tumour-associated antigens (TAAs) that display normal expression in the adult testis—an immune-privileged organ—but aberrant expression in several types of cancers, particularly in advanced cancers with stem cell-like characteristics. There has been an explosion in CTA-based research since CTAs were first identified in 1991 and MAGE-1 was shown to elicit an autologous cytotoxic T-lymphocyte (CTL) response in a patient with melanoma. The resulting data have not only highlighted a role for CTAs in tumorigenesis, but have also underscored the translational potential of these antigens for detecting and treating many types of cancers. Studies that have investigated the use of CTAs for the clinical management of urological malignancies indicate that these TAAs have potential roles as novel biomarkers, with increased specificity and sensitivity compared to those currently used in the clinic, and therapeutic targets for cancer immunotherapy. Increasing evidence supports the utilization of these promising tools for urological indications.

Key Points

  • Restricted expression of cancer/testis antigens (CTAs) in an immune-privileged organ (the adult testis) and aberrant expression in malignant tissue make CTAs ideal biomarkers and immunotherapeutic targets for managing urological cancers

  • Unlike many cancer-associated genes, which frequently harbour mutations associated with their pathological function, mutations in genes encoding the CTAs are extremely rare

  • The majority of CTAs are thought to be intrinsically disordered proteins that often engage in promiscuous interactions with other proteins when overexpressed

  • A key problem for CTA-based therapies is tumour cell heterogeneity, which results in differential expression of CTAs; use of the FDA-approved DNA methylation inhibitor decitabine can circumvent this issue

  • Use of a combination of markers is likely to improve the accuracy of prognostication and treatment stratification compared to utilization of a single marker

  • The success of clinical trials underscores the immunotherapeutic potential of a CTA-based approach and indicates that CTAs could be used as clinical tools for urological malignancies in the near future

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of an immunotherapeutic approach to treating urological malignancies that utilizes immunogenic peptides corresponding to CTAs.
Figure 2: Normalized expression heat maps.
Figure 3: Schematic diagram of mammalian spermatogenesis that depicts the stages of testicular germ cell tumour development.

Similar content being viewed by others

References

  1. O'Callaghan, T. Introduction: the prevention agenda. Nature 471, 2–4 (2011).

    Article  CAS  Google Scholar 

  2. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    Article  PubMed  Google Scholar 

  3. Kinsella, K. & Wan, H. E. International population report. An aging world. (U.S. Government Printing Office, Washington DC, 2009).

    Google Scholar 

  4. Arteaga, C. L. & Baselga, J. Impact of genomics on personalized cancer medicine. Clin. Cancer Res. 18, 612–618 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Parkinson, D. R., Johnson, B. E. & Sledge, G. W. Making personalized cancer medicine a reality: challenges and opportunities in the development of biomarkers and companion diagnostics. Clin. Cancer Res. 18, 619–624 (2012).

    Article  PubMed  Google Scholar 

  6. Tannock, I. F. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Aragon-Ching, J. B. & Dahut, W. L. Chemotherapy in androgen-independent prostate cancer (AIPC): what's next after taxane progression? Cancer Ther. 5, 151–160 (2007).

    PubMed Central  Google Scholar 

  8. Foley, R., Marignol, L., Keane, J. P., Lynch, T. H. & Hollywood, D. Androgen hypersensitivity in prostate cancer: molecular perspectives on androgen deprivation therapy strategies. Prostate 71, 550–557 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Zachos, I. et al. Systemic therapy of metastatic bladder cancer in the molecular era: current status and future promise. Expert Opin. Investig. Drugs 19, 875–887 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Scanlan, M. J. et al. Identification of cancer/testis genes by database mining and mRNA expression analysis. Int. J. Cancer 98, 485–492 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Simpson, A. J., Caballero, O. L., Jungbluth, A., Chen, Y. T. & Old, L. J. Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer 5, 615–625 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Bera, T. K. et al. Selective POTE paralogs on chromosome 2 are expressed in human embryonic stem cells. Stem Cells Dev. 17, 325–332 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Gjerstorff, M. F. et al. Distinct GAGE and MAGE-A expression during early human development indicate specific roles in lineage differentiation. Hum. Reprod. 23, 2194–2201 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Lifantseva, N. et al. Expression patterns of cancer-testis antigens in human embryonic stem cells and their cell derivatives indicate lineage tracks. Stem Cells Int. http://dx.doi:10.4061/2011/795239.

    Article  CAS  Google Scholar 

  15. Caballero, O. L. et al. Frequent MAGE mutations in human melanoma. PLoS ONE 5, e12773 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clark, J. et al. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat. Genet. 7, 502–508 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Cerveira, N. et al. A novel spliced fusion of MLL with CT45A2 in a pediatric biphenotypic acute leukemia. BMC Cancer 10, 518 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sigalotti, L. et al. Promoter methylation controls the expression of MAGE2, 3 and 4 genes in human cutaneous melanoma. J. Immunother. 25, 16–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Sigalotti, L. et al. Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2'-deoxycytidine. Cancer Res. 64, 9167–9171 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Karpf, A. R. A potential role for epigenetic modulatory drugs in the enhancement of cancer/germ-line antigen vaccine efficacy. Epigenetics 1, 116–120 (2006).

    Article  PubMed  Google Scholar 

  21. Akers, S. N., Odunsi, K. & Karpf, A. R. Regulation of cancer germline antigen gene expression: implications for cancer immunotherapy. Future Oncol. 6, 717–732 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Yegnasubramanian, S. et al. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res. 68, 8954–8967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Glazer, C. A. et al. Integrative discovery of epigenetically derepressed cancer testis antigens in NSCLC. PLoS ONE 4, e8189 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Suyama, T. et al. Expression of cancer/testis antigens in prostate cancer is associated with disease progression. Prostate 70, 1778–1787 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Janic, A., Mendizabal, L., Llamazares, S., Rossell, D. & Gonzalez, C. Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 330, 1824–1827 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Scanlan, M. J., Simpson, A. J. & Old, L. J. The cancer/testis genes: review, standardization, and commentary. Cancer Immun. 4, 1 (2004).

    PubMed  Google Scholar 

  27. Postovit, L. M. et al. The commonality of plasticity underlying multipotent tumor cells and embryonic stem cells. J. Cell Biochem. 101, 908–917 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40, 499–507 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, J. et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 143, 313–324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma, Y. L. et al. Human embryonic stem cells and metastatic colorectal cancer cells shared the common endogenous human microRNA-26b. J. Cell Mol. Med. 15, 1941–1954 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stevenson, B. J. et al. Rapid evolution of cancer/testis genes on the X chromosome. BMC Genomics 8, 129 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Caballero, O. L. & Chen, Y. T. Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci. 100, 2014–2021 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Scanlan, M. J., Gure, A. O., Jungbluth, A. A., Old, L. J. & Chen, Y. T. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol. Rev. 188, 22–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Almeida, L. G. et al. CTdatabase: a knowledge-base of high-throughput and curated data on cancer-testis antigens. Nucleic Acids Res. 37, 816–819 (2009).

    Article  CAS  Google Scholar 

  35. Johns Hopkins University School of Medicine. ACTAbase: a comprehensive database for cancer/testis antigens [online], (2011).

  36. Andrade, V. C. et al. Prognostic impact of cancer/testis antigen expression in advanced stage multiple myeloma patients. Cancer Immun. 8, 2 (2008).

    PubMed  PubMed Central  Google Scholar 

  37. Schroder, F. H. et al. Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med. 360, 1320–1328 (2009).

    Article  PubMed  Google Scholar 

  38. Andriole, G. L. et al. Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med. 360, 1310–1319 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Draisma, G. et al. Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J. Natl Cancer Inst. 101, 374–383 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fossa, A. et al. NY-ESO-1 protein expression and humoral immune responses in prostate cancer. Prostate 59, 440–447 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Hudolin, T. et al. Immunohistochemical expression of tumor antigens MAGE-A1, MAGE-A3/4, and NY-ESO-1 in cancerous and benign prostatic tissue. Prostate 66, 13–18 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Smith, H. A., Cronk, R. J., Lang, J. M. & McNeel, D. G. Expression and immunotherapeutic targeting of the SSX family of cancer-testis antigens in prostate cancer. Cancer Res. 71, 6785–6795 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Shiraishi, T. et al. Cancer/testis antigens as potential predictors of biochemical recurrence of prostate cancer following radical prostatectomy. J. Transl. Med. 9, 153 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xie, C. et al. A novel multiplex assay combining autoantibodies plus PSA has potential implications for classification of prostate cancer from non-malignant cases. J. Transl. Med. 9, 43 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Szmania, S., Tricot, G. & van Rhee, F. NY-ESO-1 immunotherapy for multiple myeloma. Leuk. Lymphoma 47, 2037–2048 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Tyagi, P. & Mirakhur, B. MAGRIT: the largest-ever phase III lung cancer trial aims to establish a novel tumor-specific approach to therapy. Clin. Lung Cancer 10, 371–374 (2009).

    Article  PubMed  Google Scholar 

  47. Nicholaou, T. et al. Regulatory T-cell-mediated attenuation of T-cell responses to the NY-ESO-1 ISCOMATRIX vaccine in patients with advanced malignant melanoma. Clin. Cancer Res. 15, 2166–2173 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  49. Dubovsky, J. A. & McNeel, D. G. Inducible expression of a prostate cancer-testis antigen, SSX-2, following treatment with a DNA methylation inhibitor. Prostate 67, 1781–1790 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Smith, H. A. & McNeel, D. G. Vaccines targeting the cancer-testis antigen SSX-2 elicit HLA-A2 epitope-specific cytolytic T cells. J. Immunother. 34, 569–580 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yokokawa, J. et al. Identification of cytotoxic T-lymphocyte epitope(s) and its agonist epitope(s) of a novel target for vaccine therapy (PAGE4). Int. J. Cancer 121, 595–605 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Parmigiani, R. B. et al. Characterization of a cancer/testis (CT) antigen gene family capable of eliciting humoral response in cancer patients. Proc. Natl Acad. Sci. USA 103, 18066–18071 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Parmigiani, R. B. et al. Antibodies against the cancer-testis antigen CTSP-1 are frequently found in prostate cancer patients and are an independent prognostic factor for biochemical-recurrence. Int. J. Cancer 122, 2385–2390 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Miles, A. K. et al. Identification of a novel prostate cancer-associated tumor antigen. Prostate 67, 274–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Chiriva-Internati, M. et al. Identification of AKAP-4 as a new cancer/testis antigen for detection and immunotherapy of prostate cancer. Prostate 72, 12–23 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Fong, L. et al. Potentiating endogenous antitumor immunity to prostate cancer through combination immunotherapy with CTLA4 blockade and GM-CSF. Cancer Res. 69, 609–615 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Karpf, A. R., Bai, S., James, S. R., Mohler, J. L. & Wilson, E. M. Increased expression of androgen receptor coregulator MAGE-11 in prostate cancer by DNA hypomethylation and cyclic AMP. Mol. Cancer Res. 7, 523–535 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bai, S., He, B. & Wilson, E. M. Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction. Mol. Cell Biol. 25, 1238–1257 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wilson, E. M. Androgen receptor molecular biology and potential targets in prostate cancer. Ther. Adv. Urol. 2, 105–117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cronwright, G. et al. Cancer/testis antigen expression in human mesenchymal stem cells: down-regulation of SSX impairs cell migration and matrix metalloproteinase 2 expression. Cancer Res. 65, 2207–2215 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Xiang, Y. et al. JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc. Natl Acad. Sci. USA 104, 19226–19231 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kaufman, D. S., Shipley, W. U. & Feldman, A. S. Bladder cancer. Lancet 374, 239–249 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Tanaka, M. F. & Sonpavde, G. Diagnosis and management of urothelial carcinoma of the bladder. Postgrad. Med. 123, 43–55 (2011).

    Article  PubMed  Google Scholar 

  64. Babjuk, M. et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder. Eur. Urol. 54, 303–314 (2008).

    Article  PubMed  Google Scholar 

  65. Herr, H. W. et al. Neoadjuvant chemotherapy in invasive bladder cancer: the evolving role of surgery. J. Urol. 144, 1083–1088 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. Patard, J. J. et al. Expression of MAGE genes in transitional-cell carcinomas of the urinary bladder. Int. J. Cancer 64, 60–64 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Jungbluth, A. A. et al. Expression of MAGE-antigens in normal tissues and cancer. Int. J. Cancer 85, 460–465 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Bergeron, A. et al. High frequency of MAGE-A4 and MAGE-A9 expression in high-risk bladder cancer. Int. J. Cancer 125, 1365–1371 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Schultz-Thater, E. et al. MAGE-A10 is a nuclear protein frequently expressed in high percentages of tumor cells in lung, skin and urothelial malignancies. Int. J. Cancer 129, 1137–1148 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Chen, Y. T. et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc. Natl Acad. Sci. USA 94, 1914–1918 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bolli, M. et al. NY-ESO-1/LAGE-1 coexpression with MAGE-A cancer/testis antigens: a tissue microarray study. Int. J. Cancer 115, 960–966 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Ono, T. et al. Identification of proacrosin binding protein sp32 precursor as a human cancer/testis antigen. Proc. Natl Acad. Sci. USA 98, 3282–3287 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Matsuda, R. et al. LY6K is a novel molecular target in bladder cancer on basis of integrate genome-wide profiling. Br. J. Cancer 104, 376–386 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Hayami, S. et al. Overexpression of the JmjC histone demethylase KDM5B in human carcinogenesis: involvement in the proliferation of cancer cells through the E2F/RB pathway. Mol. Cancer 9, 59 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nishiyama, T. et al. Immunotherapy of bladder cancer using autologous dendritic cells pulsed with human lymphocyte antigen-A24-specific MAGE-3 peptide. Clin. Cancer Res. 7, 23–31 (2001).

    CAS  PubMed  Google Scholar 

  76. Picard, V., Bergeron, A., Larue, H. & Fradet, Y. MAGE-A9 mRNA and protein expression in bladder cancer. Int. J. Cancer 120, 2170–2177 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Parkin, C. M., Whelan, S. L., Ferlay, J., Teppo, L. & Thomas, D. IARC Scientific Publications No. 155. (International Agency for Research on Cancer, Lyon, France, 2002).

    Google Scholar 

  78. National Cancer Institute. Surveillance Research Program; Cancer Statistics Branch. SEER Program Public Use Data Tapes 1973–2002 (2005).

  79. Motzer, R. J., Bander, N. H. & Nanus, D. M. Renal-cell carcinoma. N. Engl. J. Med. 335, 865–875 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Karakiewicz, P. I. et al. Multi-institutional validation of a new renal cancer-specific survival nomogram. J. Clin. Oncol. 25, 1316–1322 (2007).

    Article  PubMed  Google Scholar 

  81. Lam, J. S., Leppert, J. T., Figlin, R. A. & Belldegrun, A. S. Role of molecular markers in the diagnosis and therapy of renal cell carcinoma. Urology 66, 1–9 (2005).

    Article  PubMed  Google Scholar 

  82. Zini, L. et al. Population-based assessment of survival after cytoreductive nephrectomy versus no surgery in patients with metastatic renal cell carcinoma. Urology 73, 342–346 (2009).

    Article  PubMed  Google Scholar 

  83. Yagoda, A. Phase II cytotoxic chemotherapy trials in renal cell carcinoma: 1983–1988. Prog. Clin. Biol. Res. 350, 227–241 (1990).

    CAS  PubMed  Google Scholar 

  84. Motzer, R. J. & Russo, P. Systemic therapy for renal cell carcinoma. J. Urol. 163, 408–417 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Jungbluth, A. A. et al. Immunohistochemical analysis of NY-ESO-1 antigen expression in normal and malignant human tissues. Int. J. Cancer 92, 856–860 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Yamanaka, K. et al. Expression of MAGE genes in renal cell carcinoma. Int. J. Mol. Med. 2, 57–60 (1998).

    CAS  PubMed  Google Scholar 

  87. Garg, M. et al. Sperm-associated antigen 9 is associated with tumor growth, migration, and invasion in renal cell carcinoma. Cancer Res. 68, 8240–8248 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Bukowski, R. M. Immunotherapy in renal cell carcinoma. Oncology (Williston Park) 13, 801–813 (1999).

    Google Scholar 

  89. Schmidinger, M. et al. Sequential administration of interferon gamma and interleukin-2 in metastatic renal cell carcinoma: results of a phase II trial. Austrian Renal Cell Carcinoma Study Group. Cancer Immunol. Immunother. 49, 395–400 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Coral, S. et al. 5-aza-2'-deoxycytidine-induced expression of functional cancer testis antigens in human renal cell carcinoma: immunotherapeutic implications. Clin. Cancer Res. 8, 2690–2695 (2002).

    CAS  PubMed  Google Scholar 

  91. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 62, 10–29 (2012).

    Article  PubMed  Google Scholar 

  92. Rosen, A., Jayram, G., Drazer, M. & Eggener, S. E. Global trends in testicular cancer incidence and mortality. Eur. Urol. 60, 374–379 (2011).

    Article  PubMed  Google Scholar 

  93. Feldman, D. R., Bosl, G. J., Sheinfeld, J. & Motzer, R. J. Medical treatment of advanced testicular cancer. JAMA 299, 672–684 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Oosterhuis, J. W. & Looijenga, L. H. Testicular germ-cell tumours in a broader perspective. Nat. Rev. Cancer 5, 210–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Jacobsen, G. K. Alpha-fetoprotein (AFP) and human chorionic gonadotropin (HCG) in testicular germ cell tumours. A comparison of histologic and serologic occurrence of tumour markers. Acta Pathol. Microbiol. Immunol. Scand. A. 91, 183–190 (1983).

    CAS  PubMed  Google Scholar 

  96. Rajpert-De Meyts, E. Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. Hum. Reprod. Update 12, 303–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Geldmacher, A., Freier, A., Losch, F. O. & Walden, P. Therapeutic vaccination for cancer immunotherapy: antigen selection and clinical responses. Hum. Vaccin. 7, S115–S119 (2011).

    Article  CAS  Google Scholar 

  99. Fratta, E. et al. The biology of cancer testis antigens: putative function, regulation and therapeutic potential. Mol. Oncol. 5, 164–182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Garcia-Manero, G. Treatment of higher-risk myelodysplastic syndrome. Semin. Oncol. 38, 673–681 (2011).

    Article  PubMed  Google Scholar 

  101. Coral, S. et al. Prolonged upregulation of the expression of HLA class I antigens and costimulatory molecules on melanoma cells treated with 5-aza-2'-deoxycytidine (5-AZA-CdR). J. Immunother. 22, 16–24 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Penney, K. L. et al. mRNA expression signature of Gleason grade predicts lethal prostate cancer. J. Clin. Oncol. 29, 2391–2396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cuzick, J. et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol. 12, 245–255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kulkarni, M. M. Chapter 25: digital multiplexed gene expression analysis using the NanoString nCounter system. (Greene Pub. Associates, Brooklyn, NY, 2011).

    Google Scholar 

  105. Cheung, I. Y. & Cheung, N. K. Molecular detection of GAGE expression in peripheral blood and bone marrow: utility as a tumor marker for neuroblastoma. Clin. Cancer Res. 3, 821–826 (1997).

    CAS  PubMed  Google Scholar 

  106. Lu, Y., Wu, L. Q., Lu, Z. H., Wang, X. J. & Yang, J. Y. Expression of SSX-1 and NY-ESO-1 mRNA in tumor tissues and its corresponding peripheral blood expression in patients with hepatocellular carcinoma. Chin. Med. J. (Engl.) 120, 1042–1046 (2007).

    Article  CAS  Google Scholar 

  107. de Bono, J. S. et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 14, 6302–6309 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Rajagopalan, K., Mooney, S. M., Parekh, N., Getzenberg, R. H. & Kulkarni, P. A majority of the cancer/testis antigens are intrinsically disordered proteins. J. Cell. Biochem. 112, 3256–3267 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vavouri, T., Semple, J. I., Garcia-Verdugo, R. & Lehner, B. Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell 138, 198–208 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. University of Auckland. R: a language and environment for statistical computing [online], (2010).

  112. Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, 80 (2004).

    Article  Google Scholar 

  113. University of Rochester Medical Center. The Comprehensive R Archive Network [online].

Download references

Acknowledgements

This work was supported by a National Cancer Institute Specialized Program of Research Excellence, the Bernard L. Schwartz Scholar Award by the Patrick C. Walsh Cancer Research Fund, and the Patana Fund of the Brady Urological Institute.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching the article and discussions of content, as well as the writing and editing of the manuscript prior to submission.

Corresponding author

Correspondence to Prakash Kulkarni.

Ethics declarations

Competing interests

A provisional patent application covering an invention on a CTA-based gene signature for prostate cancer has been filed by Johns Hopkins University on behalf of P. Kulkarni, T. Shiraishi and R. H. Getzenberg.

Supplementary information

Supplementary Materials

Cancer/testis antigens in testicular germ cell tumours. (DOC 26 kb)

Supplementary Table 1

(DOC 202 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, P., Shiraishi, T., Rajagopalan, K. et al. Cancer/testis antigens and urological malignancies. Nat Rev Urol 9, 386–396 (2012). https://doi.org/10.1038/nrurol.2012.117

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.117

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer