Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diet and prostate cancer: mechanisms of action and implications for chemoprevention

Abstract

As one of the most prevalent cancers, prostate cancer has enormous public health significance and prevention strategies would attenuate its economic, emotional, physical and social impact. Until recently, however, we have had only modest information about risk factors for this disease, apart from the well-established characteristics of age, family history and place of birth. The large worldwide variation in the incidence of prostate cancer and the increased risk in migrants who move from low-risk to high-risk countries provide strong support for modifiable environmental factors, particularly diet, in its etiology. Thus, dietary agents have gained considerable attention as chemopreventive agents against prostate cancer. Dietary fat, red and processed meat, vitamin E, selenium, tomatoes, cruciforms and green tea have all been linked with the development and aggressiveness of prostate cancer, through a range of molecular mechanisms. The direction of future clinical trials lies in clarifying the effects of these agents and exploring the biological mechanisms responsible for the prevention of prostate cancer. However, owing to the short time period between diagnosis and treatment, conventional dietary intervention techniques are not always realistic. Until large randomized trials confirm the benefit of chemopreventive and dietary modifications, patients can be advised to pursue a diet and lifestyle that enhances overall health.

Key Points

  • Diet is a major contributory factor in the development and progression of prostate cancer, via multiple molecular pathways

  • Fats, red and processed meat, vitamin E, selenium, tomatoes, cruciforms, and green tea are all associated with modification of prostate cancer risk

  • Agents that are associated with reduced risk of prostate cancer potentially share common molecular pathways of action

  • Not all agents that reduce prostate cancer risk in population-based and preclinical studies have shown benefit in clinical trials for prostate cancer prevention

  • As substantial interaction exists between the mechanisms of action of various dietary agents, combination therapy with multiple molecularly targeted agents is likely to be more beneficial than monotherapy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Androgen receptor and insulin-like growth factor signaling in chemoprevention.
Figure 2: Molecular events in the pathogenesis of prostate cancer.
Figure 3: Signaling pathways altered in response to oxidative stress.

Similar content being viewed by others

References

  1. Jemal, A. et al. Cancer statistics, 2008. CA Cancer J. Clin. 58, 71–96 (2008).

    Article  PubMed  Google Scholar 

  2. Dhom, G. Epidemiologic aspects of latent and clinically manifest carcinoma of the prostate. J. Cancer Res. Clin. Oncol. 106, 210–218 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Marrett, L. D., De, P., Airia, P. & Dryer, D. Cancer in Canada in 2008. CMAJ 179, 1163–1170 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sanda, M. G. et al. Quality of life and satisfaction with outcome among prostate-cancer survivors. N. Engl. J. Med. 358, 1250–1261 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Chan, J. M. et al. Diet after diagnosis and the risk of prostate cancer progression, recurrence, and death (United States). Cancer Causes Control 17, 199–208 (2006).

    Article  PubMed  Google Scholar 

  6. Hsing, A. W., Tsao, L. & Devesa, S. S. International trends and patterns of prostate cancer incidence and mortality. Int. J. Cancer 85, 60–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Parker, S. L., Tong, T., Bolden, S. & Wingo, P. A. Cancer statistics, 1997. CA Cancer J. Clin. 47, 5–27 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Fleshner, N. E. & Fair, W. R. Impact of the environment on urological cancers. AUA Update Series 15, 261–266 (1996).

    Google Scholar 

  9. Fair, W. R., Fleshner, N. E. & Heston, W. Cancer of the prostate: a nutritional disease? Urology 50, 840–848 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Fleshner, N. E. & Fair, W. R. Indications for transition zone biopsy in the detection of prostatic carcinoma. J. Urol. 157, 556–558 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Haenszel, W. & Kurihara, M. Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J. Natl Cancer Inst. 40, 43–68 (1968).

    CAS  PubMed  Google Scholar 

  12. Armstrong, B. & Doll, R. Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. Int. J. Cancer 15, 617–631 (1975).

    Article  CAS  PubMed  Google Scholar 

  13. Mononen, N. & Schleutker, J. Polymorphisms in genes involved in androgen pathways as risk factors for prostate cancer. J. Urol. 181, 1541–1549 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Odedina, F. T. et al. Prostate cancer disparities in black men of African descent: a comparative literature review of prostate cancer burden among black men in the United States, Caribbean, United Kingdom, and West Africa. Infect. Agent. Cancer 4 (Suppl. 1), S2 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Patel, A. R. & Klein, E. A. Risk factors for prostate cancer. Nat. Clin. Pract. Urol. 6, 87–95 (2009).

    Article  PubMed  Google Scholar 

  16. Chan, J. M., Gann, P. H. & Giovannucci, E. L. Role of diet in prostate cancer development and progression. J. Clin. Oncol. 23, 8152–8160 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Giovannucci, E. et al. A prospective study of dietary fat and risk of prostate cancer. J. Natl Cancer Inst. 85, 1571–1579 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Kolonel, L. N., Nomura, A. M. & Cooney, R. V. Dietary fat and prostate cancer: current status. J. Natl Cancer Inst. 91, 414–428 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Platz, E. A., Leitzmann, M. F., Michaud, D. S., Willett, W. C. & Giovannucci, E. Interrelation of energy intake, body size, and physical activity with prostate cancer in a large prospective cohort study. Cancer Res. 63, 8542–8548 (2003).

    CAS  PubMed  Google Scholar 

  20. Willis, M. S. & Wians, F. H. The role of nutrition in preventing prostate cancer: a review of the proposed mechanism of action of various dietary substances. Clin. Chim. Acta 330, 57–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Arber, N. et al. Celecoxib for the prevention of colorectal adenomatous polyps. N. Engl. J. Med. 355, 885–895 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Baron, J. A. et al. A randomized trial of rofecoxib for the chemoprevention of colorectal adenomas. Gastroenterology 131, 1674–1682 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Bertagnolli, M. M. et al. Celecoxib for the prevention of sporadic colorectal adenomas. N. Engl. J. Med. 355, 873–884 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Fisher, B. et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Natl Cancer Inst. 90, 1371–1388 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Vogel, V. G. et al. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 295, 2727–2741 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Thompson, I. M. et al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 349, 215–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. William, W. N. Jr, Heymach, J. V., Kim, E. S. & Lippman, S. M. Molecular targets for cancer chemoprevention. Nat. Rev. Drug Discov. 8, 213–225 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Lippman, S. M. & Hong, W. K. Cancer prevention science and practice. Cancer Res. 62, 5119–5125 (2002).

    CAS  PubMed  Google Scholar 

  29. Astorg, P. Dietary N-6 and N-3 polyunsaturated fatty acids and prostate cancer risk: a review of epidemiological and experimental evidence. Cancer Causes Control 15, 367–386 (2004).

    Article  PubMed  Google Scholar 

  30. Demark-Wahnefried, W. & Moyad, M. A. Dietary intervention in the management of prostate cancer. Curr. Opin. Urol. 17, 168–174 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Greenwald, P. Clinical trials in cancer prevention: current results and perspectives for the future. J. Nutr. 134 (12 Suppl.), 3507S–3512S (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Freedland, S. J. & Aronson, W. J. Obesity and prostate cancer. Urology 65, 433–439 (2005).

    Article  PubMed  Google Scholar 

  33. Giovannucci, E., Liu, Y., Platz, E. A., Stampfer, M. J. & Willett, W. C. Risk factors for prostate cancer incidence and progression in the health professionals follow-up study. Int. J. Cancer 121, 1571–1578 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim, D. J. et al. Premorbid diet in relation to survival from prostate cancer (Canada). Cancer Causes Control 11, 65–77 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez, C. et al. Body mass index, weight change, and risk of prostate cancer in the Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiol. Biomarkers Prev. 16, 63–69 (2007).

    Article  PubMed  Google Scholar 

  36. Hill, P., Wynder, E. L., Garbaczewski, L., Garnes, H. & Walker, A. R. Diet and urinary steroids in black and white North American men and black South African men. Cancer Res. 39, 5101–5105 (1979).

    CAS  PubMed  Google Scholar 

  37. Fleshner, N. & Zlotta, A. R. Prostate cancer prevention: past, present, and future. Cancer 110, 1889–1899 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Hamalainen, E., Adlercreutz, H., Puska, P. & Pietinen, P. Diet and serum sex hormones in healthy men. J. Steroid Biochem. 20, 459–464 (1984).

    Article  CAS  PubMed  Google Scholar 

  39. Hamalainen, E. K., Adlercreutz, H., Puska, P. & Pietinen, P. Decrease of serum total and free testosterone during a low-fat high-fibre diet. J. Steroid Biochem. 18, 369–370 (1983).

    Article  CAS  PubMed  Google Scholar 

  40. Rosenthal, M. B. et al. Effects of a high-complex-carbohydrate, low-fat, low-cholesterol diet on levels of serum lipids and estradiol. Am. J. Med. 78, 23–27 (1985).

    Article  CAS  PubMed  Google Scholar 

  41. Rao, A. V., Fleshner, N. & Agarwal, S. Serum and tissue lycopene and biomarkers of oxidation in prostate cancer patients: a case–control study. Nutr. Cancer 33, 159–164 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Ngo, T. H., Barnard, R. J., Tymchuk, C. N., Cohen, P. & Aronson, W. J. Effect of diet and exercise on serum insulin, IGF-I, and IGFBP-1 levels and growth of LNCaP cells in vitro (United States). Cancer Causes Control 13, 929–935 (2002).

    Article  PubMed  Google Scholar 

  43. Ngo, T. H. et al. Effect of isocaloric low-fat diet on human LAPC-4 prostate cancer xenografts in severe combined immunodeficient mice and the insulin-like growth factor axis. Clin. Cancer Res. 9, 2734–2743 (2003).

    CAS  PubMed  Google Scholar 

  44. Ngo, T. H. et al. Effect of isocaloric low-fat diet on prostate cancer xenograft progression to androgen independence. Cancer Res. 64, 1252–1254 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Freedland, S. J. et al. Carbohydrate restriction, prostate cancer growth, and the insulin-like growth factor axis. Prostate 68, 11–19 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lloyd, J. C. et al. Effect of isocaloric low fat diet on prostate cancer xenograft progression in a hormone deprivation model. J. Urol. 183, 1619–1624 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, Y. et al. Decreased growth of established human prostate LNCaP tumors in nude mice fed a low-fat diet. J. Natl Cancer Inst. 87, 1456–1462 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Kobayashi, N. et al. Effect of altering dietary omega-6/omega-3 fatty acid ratios on prostate cancer membrane composition, cyclooxygenase-2, and prostaglandin E2. Clin. Cancer Res. 12, 4662–4670 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gupta, S. et al. Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer 91, 737–743 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Berquin, I. M. et al. Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. J. Clin. Invest. 117, 1866–1875 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Berquin, I. M., Edwards, I. J. & Chen, Y. Q. Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Lett. 269, 363–377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aronson, W. J. et al. Growth inhibitory effect of low fat diet on prostate cancer cells: results of a prospective, randomized dietary intervention trial in men with prostate cancer. J. Urol. 183, 345–350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kobayashi, N. et al. Effect of low-fat diet on development of prostate cancer and Akt phosphorylation in the Hi-Myc transgenic mouse model. Cancer Res. 68, 3066–3073 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dagnelie, P. C., Schuurman, A. G., Goldbohm, R. A. & van den Brandt, P. A. Diet, anthropometric measures and prostate cancer risk: a review of prospective cohort and intervention studies. BJU Int. 93, 1139–1150 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Sinha, R. et al. Meat and meat-related compounds and risk of prostate cancer in a large prospective cohort study in the United States. Am. J. Epidemiol. 170, 1165–1177 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kazerouni, N., Sinha, R., Hsu, C. H., Greenberg, A. & Rothman, N. Analysis of 200 food items for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food Chem. Toxicol. 39, 423–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Sinha, R. et al. Heterocyclic amine content in beef cooked by different methods to varying degrees of doneness and gravy made from meat drippings. Food Chem. Toxicol. 36, 279–287 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Sinha, R. et al. Heterocyclic amine content of pork products cooked by different methods and to varying degrees of doneness. Food Chem. Toxicol. 36, 289–297 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Cross, A. J. et al. Iron and colorectal cancer risk in the alpha-tocopherol, beta-carotene cancer prevention study. Int. J. Cancer 118, 3147–3152 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Lewin, M. H. et al. Red meat enhances the colonic formation of the DNA adduct O6-carboxymethyl guanine: implications for colorectal cancer risk. Cancer Res. 66, 1859–1865 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Tappel, A. Heme of consumed red meat can act as a catalyst of oxidative damage and could initiate colon, breast and prostate cancers, heart disease and other diseases. Med. Hypotheses 68, 562–564 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Lijinsky, W. N-Nitroso compounds in the diet. Mutat. Res. 443, 129–138 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Cross, A. J. & Sinha, R. Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environ. Mol. Mutagen. 44, 44–55 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Sinha, R. et al. Development of a food frequency questionnaire module and databases for compounds in cooked and processed meats. Mol. Nutr. Food Res. 49, 648–655 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Bingham, S. A., Hughes, R. & Cross, A. J. Effect of white versus red meat on endogenous N-nitrosation in the human colon and further evidence of a dose response. J. Nutr. 132 (11 Suppl.), 3522S–3525S (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Cross, A. J., Pollock, J. R. & Bingham, S. A. Red meat and colorectal cancer risk: the effect of dietary iron and haem on endogenous N-nitrosation. IARC Sci. Publ. 156, 205–206 (2002).

    CAS  PubMed  Google Scholar 

  67. Cross, A. J., Pollock, J. R. & Bingham, S. A. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 63, 2358–2360 (2003).

    CAS  PubMed  Google Scholar 

  68. Kolonel, L. N. Fat, meat, and prostate cancer. Epidemiol. Rev. 23, 72–81 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Park, S. Y., Murphy, S. P., Wilkens, L. R., Henderson, B. E. & Kolonel, L. N. Fat and meat intake and prostate cancer risk: the multiethnic cohort study. Int. J. Cancer 121, 1339–1345 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Ni, J. & Yeh, S. The roles of alpha-vitamin E and its analogues in prostate cancer. Vitam. Horm. 76, 493–518 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. el Attar, T. M. & Lin, H. S. Effect of vitamin C and vitamin E on prostaglandin synthesis by fibroblasts and squamous carcinoma cells. Prostaglandins Leukot. Essent. Fatty Acids 47, 253–257 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. [No authors listed] The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. N. Engl. J. Med. 330, 1029–1035 (1994).

  73. Beier, R. et al. Induction of cyclin E-cdk2 kinase activity, E2F-dependent transcription and cell growth by Myc are genetically separable events. EMBO J. 19, 5813–5823 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gunawardena, K., Murray, D. K. & Meikle, A. W. Vitamin E and other antioxidants inhibit human prostate cancer cells through apoptosis. Prostate 44, 287–295 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Israel, K., Yu, W., Sanders, B. G. & Kline, K. Vitamin E succinate induces apoptosis in human prostate cancer cells: role for Fas in vitamin E succinate-triggered apoptosis. Nutr. Cancer 36, 90–100 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Ni, J. et al. Vitamin E succinate inhibits human prostate cancer cell growth via modulating cell cycle regulatory machinery. Biochem. Biophys. Res. Commun. 300, 357–363 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Venkateswaran, V., Fleshner, N. E. & Klotz, L. H. Modulation of cell proliferation and cell cycle regulators by vitamin E in human prostate carcinoma cell lines. J. Urol. 168, 1578–1582 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Venkateswaran, V., Fleshner, N. E. & Klotz, L. H. Synergistic effect of vitamin E and selenium in human prostate cancer cell lines. Prostate Cancer Prostatic Dis. 7, 54–56 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, Y. et al. Vitamin E succinate inhibits the function of androgen receptor and the expression of prostate-specific antigen in prostate cancer cells. Proc. Natl Acad. Sci. USA 99, 7408–7413 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jiang, Q., Wong, J., Fyrst, H., Saba, J. D. & Ames, B. N. gamma-Tocopherol or combinations of vitamin E forms induce cell death in human prostate cancer cells by interrupting sphingolipid synthesis. Proc. Natl Acad. Sci. USA 101, 17825–17830 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ni, J. et al. Tocopherol-associated protein suppresses prostate cancer cell growth by inhibition of the phosphoinositide 3-kinase pathway. Cancer Res. 65, 9807–9816 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Syed, D. N., Suh, Y., Afaq, F. & Mukhtar, H. Dietary agents for chemoprevention of prostate cancer. Cancer Lett. 265, 167–176 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fleshner, N., Fair, W. R., Huryk, R. & Heston, W. D. Vitamin E inhibits the high-fat diet promoted growth of established human prostate LNCaP tumors in nude mice. J. Urol. 161, 1651–1654 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Venkateswaran, V. et al. A combination of micronutrients is beneficial in reducing the incidence of prostate cancer and increasing survival in the Lady transgenic model. Cancer Prev. Res. (Phila. PA) 2, 473–483 (2009).

    Article  CAS  Google Scholar 

  85. Lippman, S. M. et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 301, 39–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Combs, G. F. Jr. Chemopreventive mechanisms of selenium. Med. Klin. 94 (Suppl. 3), 18–24 (1999).

    Article  Google Scholar 

  87. Helzlsouer, K. J. et al. Association between alpha-tocopherol, gamma-tocopherol, selenium, and subsequent prostate cancer. J. Natl Cancer Inst. 92, 2018–2023 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Yoshizawa, K. et al. Study of prediagnostic selenium level in toenails and the risk of advanced prostate cancer. J. Natl Cancer Inst. 90, 1219–1224 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Li, H. et al. A prospective study of plasma selenium levels and prostate cancer risk. J. Natl Cancer Inst. 96, 696–703 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Duffield-Lillico, A. J. et al. Selenium supplementation, baseline plasma selenium status and incidence of prostate cancer: an analysis of the complete treatment period of the Nutritional Prevention of Cancer Trial. BJU Int. 91, 608–612 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Dong, Y. et al. Prostate specific antigen expression is down-regulated by selenium through disruption of androgen receptor signaling. Cancer Res. 64, 19–22 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Morris, J. D. et al. Selenium- or quercetin-induced retardation of DNA synthesis in primary prostate cells occurs in the presence of a concomitant reduction in androgen-receptor activity. Cancer Lett. 239, 111–122 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Venkateswaran, V., Klotz, L. H. & Fleshner, N. E. Selenium modulation of cell proliferation and cell cycle biomarkers in human prostate carcinoma cell lines. Cancer Res. 62, 2540–2545 (2002).

    CAS  PubMed  Google Scholar 

  94. Venkateswaran, V. Selenium and prostate cancer: biological pathways and biochemical nuances. Cancer Ther. 4, 73–80 (2006).

    Google Scholar 

  95. Zhong, W. & Oberley, T. D. Redox-mediated effects of selenium on apoptosis and cell cycle in the LNCaP human prostate cancer cell line. Cancer Res. 61, 7071–7078 (2001).

    CAS  PubMed  Google Scholar 

  96. Husbeck, B., Nonn, L., Peehl, D. M. & Knox, S. J. Tumor-selective killing by selenite in patient-matched pairs of normal and malignant prostate cells. Prostate 66, 218–225 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. D'Andrea, G. M. Use of antioxidants during chemotherapy and radiotherapy should be avoided. CA Cancer J. Clin. 55, 319–321 (2005).

    Article  PubMed  Google Scholar 

  98. Tabassum A., Bristow, R. G. & Venkateswaran, V. Ingestion of selenium and other antioxidants during prostate cancer radiotherapy: a good thing? Cancer Treat. Rev. 36, 230–234 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Hu, H., Jiang, C., Ip, C., Rustum, Y. M. & Lu, J. Methylseleninic acid potentiates apoptosis induced by chemotherapeutic drugs in androgen-independent prostate cancer cells. Clin. Cancer Res. 11, 2379–2388 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Jiang, C., Wang, Z., Ganther, H. & Lu, J. Distinct effects of methylseleninic acid versus selenite on apoptosis, cell cycle, and protein kinase pathways in DU145 human prostate cancer cells. Mol. Cancer Ther. 1, 1059–1066 (2002).

    CAS  PubMed  Google Scholar 

  101. Jiang, C., Hu, H., Malewicz, B., Wang, Z. & Lu, J. Selenite-induced p53 Ser-15 phosphorylation and caspase-mediated apoptosis in LNCaP human prostate cancer cells. Mol. Cancer Ther. 3, 877–884 (2004).

    CAS  PubMed  Google Scholar 

  102. Yamaguchi, K. et al. Methylseleninic acid sensitizes prostate cancer cells to TRAIL-mediated apoptosis. Oncogene 24, 5868–5877 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Wu, Y., Zu, K., Warren, M. A., Wallace, P. K. & Ip, C. Delineating the mechanism by which selenium deactivates Akt in prostate cancer cells. Mol. Cancer Ther. 5, 246–252 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Dong, Y., Zhang, H., Gao, A. C., Marshall, J. R. & Ip, C. Androgen receptor signaling intensity is a key factor in determining the sensitivity of prostate cancer cells to selenium inhibition of growth and cancer-specific biomarkers. Mol. Cancer Ther. 4, 1047–1055 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Chan, J. M. et al. Plasma selenium, manganese superoxide dismutase, and intermediate- or high-risk prostate cancer. J. Clin. Oncol. 27, 3577–3583 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhong, W. et al. Alteration of cellular phenotype and responses to oxidative stress by manganese superoxide dismutase and a superoxide dismutase mimic in RWPE-2 human prostate adenocarcinoma cells. Antioxid. Redox Signal. 6, 513–522 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Shimoda-Matsubayashi, S. et al. Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene: A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson's disease. Biochem. Biophys. Res. Commun. 226, 561–565 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Ellinger, S., Ellinger, J. & Stehle, P. Tomatoes, tomato products and lycopene in the prevention and treatment of prostate cancer: do we have the evidence from intervention studies? Curr. Opin. Clin. Nutr. Metab. Care 9, 722–727 (2006).

    Article  PubMed  Google Scholar 

  109. Giovannucci, E. Tomato products, lycopene, and prostate cancer: a review of the epidemiological literature. J. Nutr. 135, 2030S–2031S (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Giovannucci, E., Rimm, E. B., Liu, Y., Stampfer, M. J. & Willett, W. C. A prospective study of tomato products, lycopene, and prostate cancer risk. J. Natl Cancer Inst. 94, 391–398 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. van Breemen, R. B. & Pajkovic, N. Multitargeted therapy of cancer by lycopene. Cancer Lett. 269, 339–351 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Guns, E. S. & Cowell, S. P. Drug Insight: lycopene in the prevention and treatment of prostate cancer. Nat. Clin. Pract. Urol. 2, 38–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Muzandu, K. et al. Lycopene and beta-carotene ameliorate catechol estrogen-mediated DNA damage. Jpn J. Vet. Res. 52, 173–184 (2005).

    PubMed  Google Scholar 

  114. Muzandu, K. et al. Effect of lycopene and beta-carotene on peroxynitrite-mediated cellular modifications. Toxicol. Appl. Pharmacol. 215, 330–340 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Park, Y. O., Hwang, E. S. & Moon, T. W. The effect of lycopene on cell growth and oxidative DNA damage of Hep3B human hepatoma cells. Biofactors 23, 129–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Erdman, J. W. Jr, Ford, N. A. & Lindshield, B. L. Are the health attributes of lycopene related to its antioxidant function? Arch. Biochem. Biophys. 483, 229–235 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Ivanov, N. I. et al. Lycopene differentially induces quiescence and apoptosis in androgen-responsive and -independent prostate cancer cell lines. Clin. Nutr. 26, 252–263 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Hantz, H. L., Young, L. F. & Martin, K. R. Physiologically attainable concentrations of lycopene induce mitochondrial apoptosis in LNCaP human prostate cancer cells. Exp. Biol. Med. (Maywood) 230, 171–179 (2005).

    Article  CAS  Google Scholar 

  119. Liu, X., Allen, J. D., Arnold, J. T. & Blackman, M. R. Lycopene inhibits IGF-I signal transduction and growth in normal prostate epithelial cells by decreasing DHT-modulated IGF-I production in co-cultured reactive stromal cells. Carcinogenesis 29, 816–823 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Kanagaraj, P. et al. Effect of lycopene on insulin-like growth factor-I, IGF binding protein-3 and IGF type-I receptor in prostate cancer cells. J. Cancer Res. Clin. Oncol. 133, 351–359 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Siler, U. et al. Lycopene effects on rat normal prostate and prostate tumor tissue. J. Nutr. 135, 2050S–2052S (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Wertz, K., Siler, U. & Goralczyk, R. Lycopene: modes of action to promote prostate health. Arch. Biochem. Biophys. 430, 127–134 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Edinger, M. S. & Koff, W. J. Effect of the consumption of tomato paste on plasma prostate-specific antigen levels in patients with benign prostate hyperplasia. Braz. J. Med. Biol. Res. 39, 1115–1119 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Schwenke, C., Ubrig, B., Thurmann, P., Eggersmann, C. & Roth, S. Lycopene for advanced hormone refractory prostate cancer: a prospective, open phase II pilot study. J. Urol. 181, 1098–1103 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Kirsh, V. A. et al. A prospective study of lycopene and tomato product intake and risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev. 15, 92–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Peters, U. et al. Serum lycopene, other carotenoids, and prostate cancer risk: a nested case–control study in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol. Biomarkers Prev. 16, 962–968 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Kavanaugh, C. J., Trumbo, P. R. & Ellwood, K. C. The U. S. Food and Drug Administration's evidence-based review for qualified health claims: tomatoes, lycopene, and cancer. J. Natl Cancer Inst. 99, 1074–1085 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Ambrosone, C. B. et al. Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J. Nutr. 134, 1134–1138 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Lin, H. J. et al. Glutathione transferase (GSTM1) null genotype, smoking, and prevalence of colorectal adenomas. Cancer Res. 55, 1224–1226 (1995).

    CAS  PubMed  Google Scholar 

  130. Spitz, M. R. et al. Dietary intake of isothiocyanates: evidence of a joint effect with glutathione S-transferase polymorphisms in lung cancer risk. Cancer Epidemiol. Biomarkers Prev. 9, 1017–1020 (2000).

    CAS  PubMed  Google Scholar 

  131. Wang, L. I. et al. Dietary intake of cruciferous vegetables, glutathione S-transferase (GST) polymorphisms and lung cancer risk in a Caucasian population. Cancer Causes Control 15, 977–985 (2004).

    Article  PubMed  Google Scholar 

  132. Joseph, M. A. et al. Cruciferous vegetables, genetic polymorphisms in glutathione S-transferases M1 and T1, and prostate cancer risk. Nutr. Cancer 50, 206–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Kristal, A. R. & Lampe, J. W. Brassica vegetables and prostate cancer risk: a review of the epidemiological evidence. Nutr. Cancer 42, 1–9 (2002).

    Article  PubMed  Google Scholar 

  134. Kirsh, V. A. et al. Prospective study of fruit and vegetable intake and risk of prostate cancer. J. Natl Cancer Inst. 99, 1200–1209 (2007).

    Article  PubMed  Google Scholar 

  135. Giovannucci, E., Rimm, E. B., Liu, Y., Stampfer, M. J. & Willett, W. C. A prospective study of cruciferous vegetables and prostate cancer. Cancer Epidemiol. Biomarkers Prev. 12, 1403–1409 (2003).

    CAS  PubMed  Google Scholar 

  136. Hsing, A. W., Comstock, G. W., Abbey, H. & Polk, B. F. Serologic precursors of cancer. Retinol, carotenoids, and tocopherol and risk of prostate cancer. J. Natl Cancer Inst. 82, 941–946 (1990).

    Article  CAS  PubMed  Google Scholar 

  137. Key, T. J. et al. Fruits and vegetables and prostate cancer: no association among 1104 cases in a prospective study of 130544 men in the European Prospective Investigation into Cancer and Nutrition (EPIC). Int. J. Cancer 109, 119–124 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Stram, D. O. et al. Prostate cancer incidence and intake of fruits, vegetables and related micronutrients: the multiethnic cohort study* (United States). Cancer Causes Control 17, 1193–1207 (2006).

    Article  PubMed  Google Scholar 

  139. Singh, S. V. et al. Sulforaphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J. Biol. Chem. 280, 19911–19924 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Zhang, Y. Cancer-preventive isothiocyanates: measurement of human exposure and mechanism of action. Mutat. Res. 555, 173–190 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Zhang, Y., Talalay, P., Cho, C. G. & Posner, G. H. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc. Natl Acad. Sci. USA 89, 2399–2403 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jones, S. B. & Brooks, J. D. Modest induction of phase 2 enzyme activity in the F-344 rat prostate. BMC Cancer 6, 62 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Singh, A. V., Xiao, D., Lew, K. L., Dhir, R. & Singh, S. V. Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis 25, 83–90 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Juge, N., Mithen, R. F. & Traka, M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell. Mol. Life Sci. 64, 1105–1127 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Jakubikova, J., Sedlak, J., Bod'o, J. & Bao, Y. Effect of isothiocyanates on nuclear accumulation of NF-κB, Nrf2, and thioredoxin in caco-2 cells. J. Agric. Food Chem. 54, 1656–1662 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Xu, C. et al. ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 cells. Carcinogenesis 27, 437–445 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Keum, Y. S. et al. Pharmacokinetics and pharmacodynamics of broccoli sprouts on the suppression of prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) mice: implication of induction of Nrf2, HO-1 and apoptosis and the suppression of Akt-dependent kinase pathway. Pharm. Res. 26, 2324–2331 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Myzak, M. C., Hardin, K., Wang, R., Dashwood, R. H. & Ho, E. Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis 27, 811–819 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Gibbs, A., Schwartzman, J., Deng, V. & Alumkal, J. Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6. Proc. Natl Acad. Sci. USA 106, 16663–16668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mukhtar, H. & Ahmad, N. Tea polyphenols: prevention of cancer and optimizing health. Am. J. Clin. Nutr. 71 (6 Suppl.), 1698S–1702S (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Erba, D. et al. Effectiveness of moderate green tea consumption on antioxidative status and plasma lipid profile in humans. J. Nutr. Biochem. 16, 144–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Khan, N. & Mukhtar, H. Tea polyphenols for health promotion. Life Sci. 81, 519–533 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Khan, N. & Mukhtar, H. Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett. 269, 269–280 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bettuzzi, S. et al. Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Cancer Res. 66, 1234–1240 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Brausi, M., Rizzi, F. & Bettuzzi, S. Chemoprevention of human prostate cancer by green tea catechins: two years later: a follow-up update. Eur. Urol. 54, 472–473 (2008).

    Article  PubMed  Google Scholar 

  156. Choan, E. et al. A prospective clinical trial of green tea for hormone refractory prostate cancer: an evaluation of the complementary/alternative therapy approach. Urol. Oncol. 23, 108–113 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Adhami, V. M. et al. Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo. Clin. Cancer Res. 13, 1611–1619 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Siddiqui, I. A. et al. Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene 27, 2055–2063 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Gupta, S., Ahmad, N., Nieminen, A. L. & Mukhtar, H. Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells. Toxicol. Appl. Pharmacol. 164, 82–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Gupta, S., Hastak, K., Afaq, F., Ahmad, N. & Mukhtar, H. Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappa B and induction of apoptosis. Oncogene 23, 2507–2522 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Adhami, V. M., Siddiqui, I. A., Ahmad, N., Gupta, S. & Mukhtar, H. Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer. Cancer Res. 64, 8715–8722 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Hastak, K. et al. Role of p53 and NF-kappaB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene 22, 4851–4859 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Hastak, K., Agarwal, M. K., Mukhtar, H. & Agarwal, M. L. Ablation of either p21 or Bax prevents p53-dependent apoptosis induced by green tea polyphenol epigallocatechin-3-gallate. FASEB J. 19, 789–791 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Sartor, L. et al. Prostate carcinoma and green tea: (-)epigallocatechin-3-gallate inhibits inflammation-triggered MMP-2 activation and invasion in murine TRAMP model. Int. J. Cancer 112, 823–829 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Patel, S. P., Hotston, M., Kommu, S. & Persad, R. A. The protective effects of green tea in prostate cancer. BJU Int. 96, 1212–1214 (2005).

    Article  PubMed  Google Scholar 

  166. Gupta, S., Hastak, K., Ahmad, N., Lewin, J. S. & Mukhtar, H. Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc. Natl Acad. Sci. USA 98, 10350–10355 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Adhami, V. M. et al. Effective prostate cancer chemopreventive intervention with green tea polyphenols in the TRAMP model depends on the stage of the disease. Clin. Cancer Res. 15, 1947–1953 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lawson, K. A. et al. Multivitamin use and risk of prostate cancer in the National Institutes of Health-AARP Diet and Health Study. J. Natl Cancer Inst. 99, 754–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Kumi-Diaka, J., Merchant, K., Haces, A., Hormann, V. & Johnson, M. Genistein–selenium combination induces growth arrest in prostate cancer cells. J. Med. Food 13, 1–9 (2010).

    Article  CAS  Google Scholar 

  170. Hasler, C. M. & Blumberg, J. B. Phytochemicals: biochemistry and physiology: introduction. J. Nutr. 129, 756S–757S (1999).

    Article  CAS  PubMed  Google Scholar 

  171. Agarwal, R. Cell signaling and regulators of cell cycle as molecular targets for prostate cancer prevention. Biochem. Pharmacol. 60, 1051–1059 (2000).

    Article  CAS  PubMed  Google Scholar 

  172. Pezzato, E. et al. Prostate carcinoma and green tea: PSA-triggered basement membrane degradation and MMP-2 activation are inhibited by (-)epigallocatechin-3-gallate. Int. J. Cancer 112, 787–792 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence H. Klotz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkateswaran, V., Klotz, L. Diet and prostate cancer: mechanisms of action and implications for chemoprevention. Nat Rev Urol 7, 442–453 (2010). https://doi.org/10.1038/nrurol.2010.102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2010.102

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing