Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glutathione S-transferases in kidney and urinary bladder tumors

Abstract

Exposure to potential carcinogens is an etiologic factor for renal cell carcinoma (RCC) and transitional cell carcinoma (TCC) of the urinary bladder. Cytosolic glutathione S-transferases (GSTs) are a superfamily of enzymes that protect normal cells by catalyzing conjugation reactions of electrophilic compounds, including carcinogens, to glutathione. Some GST enzymes possess antioxidant activity against hydroperoxides. The most well characterized classes have been named alpha (GSTA), mu (GSTM), pi (GSTP) and theta (GSTT); each of these classes contains several different isoenzymes. Several types of allelic variation have been identified within classes, with GSTM1-null, GSTT1-null and GSTP1-Ile105/Ile105 conferring impaired catalytic activity. The effects of GSTM1 and GSTT1 polymorphism on susceptibility to RCC depend on exposure to specific chemicals. Individuals with the GSTM1-null genotype carry a higher risk for TCC. The roles of GSTT1 polymorphism in TCC and GSTP1 polymorphisms in both cancers are still controversial. During kidney cancerization, expression of GSTA isoenzymes tends to decrease, which promotes the pro-oxidant environment necessary for RCC growth. In the malignant phenotype of TCC of the bladder, upregulation of various GST classes occurs. Upregulation of GSTT1 and GSTP1 might have important consequences for TCC growth by providing a reduced cellular environment and inhibition of apoptotic pathways.

Key Points

  • Individuals with GSTM1-positive and GSTT1-positive genotypes are at increased risk for renal cell carcinoma (RCC) when occupationally exposed to certain toxicants

  • Individuals with the GSTM1-null genotype are at increased risk for bladder cancer, which might be potentiated by smoking and occupational hazards

  • Data on the influence of GSTT1 polymorphism on the risk for transitional cell carcinoma (TCC) are inconsistent

  • In the process of kidney cancerization, expression of GSTA isoenzymes is downregulated, which contributes to decreased antioxidant capacity in RCC and might enhance RCC growth

  • In the malignant phenotype of TCC of the urinary bladder, upregulation of GSTT1 and GSTP1 might provide a reduced cellular environment and inhibit apoptotic pathways, respectively.

  • GSTP1 enzyme activities are generally retained in RCC, and might influence resistance to chemotherapy; in TCC, GSTP1 should be considered as a potential therapeutic target

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Action of glutathione S-transferases.
Figure 2: Role of glutathione S-transferases in biotransformation reactions.
Figure 3: Targeting GSTP1 in transitional cell carcinoma of the urinary bladder: a potential therapeutic approach.

Similar content being viewed by others

References

  1. Moore, L. E., Wilson, R. T. & Campleman, S. L. Lifestyle factors, exposures, genetic susceptibility, and renal cell cancer risk: a review. Cancer Invest. 23, 240–255 (2005).

    Article  PubMed  Google Scholar 

  2. Their, R., Golka, K., Bruning, T., Ko, Y. & Bolt, H. M. Genetic susceptibility to environmental toxicants: the interface between human and experimental studies in the development of new toxicological concepts. Toxicol. Lett. 127, 321–327 (2002).

    Article  Google Scholar 

  3. Hayes, J. D. & Strange, R. C. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 61, 154–166 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Gate, L. & Tew, K. D. Glutathione S-transferases as emerging therapeutic targets. Expert Opin. Ther. Targets 5, 477–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Adler, V. & Pincus, M. R. Effector peptides from glutathione S-transferase-pi affect the activation of jun by jun-N-terminal kinase. Ann. Clin. Lab. Sci. 34, 35–46 (2004).

    CAS  PubMed  Google Scholar 

  6. Habig, W. H., Pabst, M. J. & Jakoby, W. B. Glutathione S-transferase-the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139 (1974).

    CAS  PubMed  Google Scholar 

  7. Seidegard, J., Vorachek, W. R., Pero, R. W. & Pearson, W. R. Hereditary difference in the expression of the human glutathione S-transferase active on trans-stilbene oxide are due to a gene deletion. Proc. Natl Acad. Sci. USA 85, 7293–7297 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sweeney, C. et al. Glutathione S-transferase M1, T1, and P1 polymorphisms as risk factors for renal cell carcinoma: a case-control study. Cancer Epidemiol. Biomarkers Prev. 9, 449–454 (2000).

    CAS  PubMed  Google Scholar 

  9. Pemble, S. et al. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem. J. 300, 271–276 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wiencke, J. K. Pemble, S., Ketterer, B. & Kelsey, K. T. Gene deletion of glutathione S-transferase theta: correlation with induced genetic damage and potential role in endogenous mutagenesis. Cancer Epidemiol. Biomarkers Prev. 4, 253–259 (1995).

    CAS  PubMed  Google Scholar 

  11. Coles, F. B. & Kadlubar, F. F. Human alpha class glutathione S-transferases: genetic polymorphism, expression, and susceptibility to disease. Methods Enzymol. 401, 9–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Simic, T., Pljesa-Ercegovac, M., Savic-Radojevic, A., Hadziahmetovic, M. & Mimic-Oka, J. Identification of a glutathione S-transferase without affinity for glutathione sepharose in human kidney. Amino Acids 30, 495–498 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Hurst, R., Bao, Y., Jemth, P., Mannervik, B. & Williamson, G. Phospholipid hydroperoxide glutathione peroxidase activity of human glutathione transferases. Biochem. J. 332, 97–100 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peters, M. M, Rivera, M. I., Jones, T. W., Monks, T. J. & Lau, S. S. Glutathione conjugates of tert-butyl-hydroquinone, a metabolite of the urinary tract tumour promoter 3-tert-butyl-hydroxyanisole, are toxic to kidney and bladder. Cancer Res. 56, 1006–1011 (1996).

    CAS  PubMed  Google Scholar 

  15. Brüning, T. et al. Glutathione transferase alpha as a marker for tubular damage after trichloroethylene exposure. Arch. Toxicol. 73, 246–254 (1999).

    Article  PubMed  Google Scholar 

  16. Kellen, E. et al. Pooled analysis and meta-analysis of the glutathione S-transferase P1 Ile105Val polymorphism and bladder cancer: a HuGE-GSEC review. Am. J. Epidemiol. 165, 1221–1230 (2007).

    Article  PubMed  Google Scholar 

  17. Garte, S. et al. Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol. Biomarkers Prev. 10, 1239–1248 (2001).

    CAS  PubMed  Google Scholar 

  18. Green, T., Dow, J., Ellis, M. K, Foster, J. R. & Odum, J. The role of glutathione conjugation in the development of kidney tumours in rats exposed to trichloroethylene. Chem. Biol. Interact. 105, 99–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Rodilla, V. et al. Glutathione S-transferases in human renal cortex and neoplastic tissue: enzymatic activity, isoenzyme profile and immunohistochemical localization. Xenobiotica 28, 443–456 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Simic, T., Mimic-Oka, J., Ille, K., Savic-Radojevic, A. & Reljic, Z. Isoenzyme profile of glutathione S-transferases in human kidney. Urol. Res. 29, 38–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Delbanco, E. H. et al. Glutathione transferase activities in renal carcinomas and adjacent normal renal tissues: factors influencing renal carcinogenesis induced by xenobiotics. Arch. Toxicol. 74, 688–694 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Singh, S. V., Roberts, B., Gudi, V. A., Ruiz, P. & Awasthi, Y. C. Immunohistochemical localization, purification, and characterization of human urinary bladder glutathione S-transferases. Biochim. Biophys. Acta 1074, 363–370 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Berendsen, C. L. et al. Glutathione S-transferase activity and subunit composition in transitional cell cancer and mucosa of the human bladder. Urology 49, 644–651 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Kempkes, M., Golka, K., Reich, S., Reckwitz, T. & Bolt, H. M. Glutathione S-transferase GSTM1 and GSTT1 null genotypes as potential risk factors for urothelial cancer of the bladder. Arch. Toxicol. 71, 123–126 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Katoh, T. et al. Effects of glutathione S-transferase (GST) M1 and GSTT1 genotypes on urothelial cancer risk. Cancer Lett. 132, 147–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Martin, G. M. et al. Somatic mutations are frequent and increase with age in human kidney epithelial cells. Hum. Mol. Genet. 5, 215–221 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Longuemaux, S. et al. Candidate genetic modifiers of individual susceptibility to renal cell carcinoma: a study of polymorphic human xenobiotic-metabolizing enzymes. Cancer Res. 59, 2903–2908 (1999).

    CAS  PubMed  Google Scholar 

  28. Buzio, L. et al. Glutathione S-transferases M1–1 and T1–1 as risk modifiers for renal cell cancer associated with occupational exposure to chemicals. Occup. Environ. Med. 60, 789–793 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karami, S. et al. Renal cell carcinoma, occupational pesticide exposure and modification by glutathione S-transferase polymorphisms. Carcinogenesis 29, 1567–1571 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brüning, T. et al. Influence of polymorphisms of GSTM1 and GSTT1 for risk of renal cell cancer in workers with long-term high occupational exposure to trichloroethene. Arch. Toxicol. 71, 596–599 (1997).

    Article  PubMed  Google Scholar 

  31. Wiesenhütter, B., Selinski, S., Golka, K., Brüning, T. & Bolt, H. M. Re-assessment of the influence of polymorphisms of phase-II metabolic enzymes on renal cell cancer risk of trichloroethylene-exposed workers. Arch. Occup. Environ. Health 81, 247–251 (2007).

    Article  CAS  Google Scholar 

  32. Landi, S. Mammalian class Theta GST and differential susceptibility to carcinogens: a review. Mut. Res. 463, 247–283 (2000).

    Article  CAS  Google Scholar 

  33. Golka, K. et al. The influence of polymorphisms of glutathione S-transferases M1 and M3 on the development of human urothelial cancer. J. Toxicol. Environ. Health Part A 71, 881–886 (2008).

    Article  CAS  Google Scholar 

  34. Shao, J. et al. Genetic variants of the cytochrome P450 and glutathione S-transferase associated with risk of bladder cancer in a southeastern Chinese population. Int. J. Urol. 15, 216–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Engel, L. S. et al. Pooled analysis and meta-analysis of glutathione S-transferase M1 and bladder cancer: a HuGE review. Am. J. Epidemiol. 56, 95–109 (2002).

    Article  Google Scholar 

  36. Tsukino, H. et al. Glutathione S-transferase (GST) M1, T1 and N-acetyltransferase 2 (NAT2) polymorphisms and urothelial cancer risk with tobacco smoking. Eur. J. Cancer Prev. 13, 509–514 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. García-Closas, M. et al. NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 366, 649–659 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Golka, K. et al. Occupational and non-occupational risk factors in bladder cancer patients in an industrialized area located in former East Germany. Aktuelle Urol. 36, 417–422 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Filiadis, I. & Hrouda, D. Genetic factors in chemically induced transitional cell bladder cancer. BJU Int. 86, 794–801 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Brockmöller, J., Cascorbi, I., Kerb, R. & Roots, I. Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res. 56, 3915–3925 (1996).

    PubMed  Google Scholar 

  41. Kim, W. J. et al. GSTT1-null genotype is a protective factor against bladder cancer. Urology 60, 913–918 (2002).

    Article  PubMed  Google Scholar 

  42. Simic, T. et al. Glutathione S-transferase T1–1 activity upregulated in transitional cell carcinoma of urinary bladder. Urology 65, 1035–1040 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Harries, L. W., Stubbins, M. J., Forman, D., Howard, G. C. & Wolf, C. R. Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 18, 641–644 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Cao, W. et al. Tobacco smoking, GSTP1 polymorphism, and bladder carcinoma. Cancer 104, 2400–2408 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Mittal, R. D., Srivastava, D. S., Srivastava, A. M. & Srivastava, B. M. Genetic polymorphism of drug metabolizing enzymes (CYP2E1, GSTP1) and susceptibility to bladder cancer in North India. Asian Pac. J. Cancer Prev. 6, 6–9 (2005).

    PubMed  Google Scholar 

  46. Salinas, A. E. & Wong, M. G. Glutathione S-transferases—a review. Curr. Med. Chem. 6, 279–309 (1999).

    CAS  PubMed  Google Scholar 

  47. Pljesa-Ercegovac, M. et al. Altered antioxidant capacity in human renal cell carcinoma: role of glutathione-associated enzymes. Urol. Oncol. 26, 175–181 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Towsend, D. & Tew, K. The role of glutathione S-transferase in anti-cancer drug resistance. Oncogene 22, 7369–7375 (2003).

    Article  CAS  Google Scholar 

  49. Turella, P. et al. Proapoptotic activity of new glutathione S-transferase inhibitors. Cancer Res. 65, 3751–3761 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Henderson, J. C. & Wolf, C. R. Disruption of the glutathione transferase pi class genes. Methods Enzymol. 401, 116–135 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Lusini, L. et al. Altered glutathione anti-oxidant metabolism during tumor progression in human renal cell carcinoma. Int. J. Cancer 91, 55–59 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Di Illio. C., Del Boccio, G., Aceto, A. & Fererici, G. Alteration of glutathione transferase isoenzyme concentration in human renal carcinoma. Carcinogenesis 8, 861–864 (1987).

    Article  Google Scholar 

  53. Klone, A. et al. Decreased expression of the glutathione S-transferase alpha and pi genes in human renal cell carcinoma. Carcinogenesis 11, 2179–2183 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Howie, A. F. et al. Glutathione S-transferase and glutathione peroxidase expression in normal and tumour human tissues. Carcinogenesis 11, 451–458 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Simic, T., Mimic-Oka, J., Ille, K., Dragicevic, D. & Savic-Radojevic, A. Glutathione S-transferase isoenzyme profile in non-tumor and tumor human kidney tissue. World J. Urol. 20, 385–391 (2003).

    CAS  PubMed  Google Scholar 

  56. Chuang, S. T. et al. Overexpression of glutathione S-transferase alpha in clear cell renal cell carcinoma. Am. J. Clin. Pathol. 123, 421–429 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, L. et al. Immunohistochemical analysis of chromophobe renal cell carcinoma, renal oncocytoma, and clear cell carcinoma: an optimal and practical panel for differential diagnosis. Arch. Pathol. Lab. Med. 131, 1290–1297 (2007).

    PubMed  Google Scholar 

  58. Takahashi, M. Molecular subclassification of kidney tumors and the discovery of new diagnostic markers. Oncogene 22, 6810–6818 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Zhao, T. et al. The role of human glutathione S-transferases hGSTA1–1 and hGSTA2–2 in protection against oxidative stress. Arch. Biochem. Biophys. 367, 216–224 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Toyokuni, S., Okamoto, K., Yodoi, J. & Hiai, H. Persistent oxidative stress in cancer. FEBS Lett. 358, 1–3 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Blackburn, R. V. et al. Metabolic oxidative stress activates signal transduction and gene expression during glucose deprivation in human tumor cells. Free Radic. Biol. Med. 26, 419–430 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Toffoli, G. et al. Expression of glutathione S-transferases in human tumors. Eur. J. Cancer 28, 1441–1446 (1992).

    Article  Google Scholar 

  63. Di Illio, C. et al. Glutathione transferase isoenzymes in normal and neoplastic kidney tissue. Carcinogenesis 12, 1471–1475 (1991).

    Article  Google Scholar 

  64. Giralt, M., Lafuente, A., Pujol, F. & Mallol, J. Enhanced glutathione S-transferase activity and glutathione content in human bladder cancer. Follow up study: influence of smoking. J. Urol. 149, 1452–1454 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Savic-Radojevic, A. et al. Glutathione S-transferase-P1 expression correlates with increased antioxidant capacity in transitional cell carcinoma of the urinary bladder. Eur. Urol. 52, 470–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Goldschmidt-Clermont, P. & Moldovan, L. Stress, superoxide and signal transduction. Gene Expr. 7, 255–260 (1999).

    CAS  PubMed  Google Scholar 

  67. Yang, C. R. et al. Intracellular glutathione content of urothelial cancer in correlation to chemotherapy response. Cancer Lett. 119, 157–162 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. O'Brien, M. L. & Tew, K. D. Glutathione and related enzymes in multidrug resistance. Eur. J. Cancer 32, 967–978 (1996).

    Article  Google Scholar 

  69. Wang, T., Arifoglu, P., Ronai, Z. & Tew, K. Glutathione S-transferase P1–1 (GSTP1–1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaaction with the C terminus. J. Biol. Chem. 276, 20999–21003 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Wada, T. & Penninger, J. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23, 2838–2849 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Burg, D., Riepsaame, J., Pont, C., Mulder, G. & van de Water, B. Peptide-bond modified glutathione conjugate analogs modulate GST pi function in glutathione-conjugation, drug sensitivity and JNK signaling. Biochem. Pharmacol. 71, 268–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Pljesa-Ercegovac, M. et al. Enhanced GSTP1 expression in transitional cell carcinoma of urinary bladder is associated with altered apoptotic pathways. Urol. Oncol. doi:10.1016/j.urolonc.2008.10.019 (2009).

  73. Lo, H. W. & Ali-Osman, F. Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance. Curr. Opin. Pharmacol. 7, 367–374 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Yu, D. S., Ma, C. P. & Chang, S. Y. Establishment and characterization of renal cell carcinoma cell lines with multidrug resistance. Urol. Res. 28, 86–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Volm, M., Kastel. M. & Mattern Jefferth, T. Expression of resistance factors (P-glycoprotein, glutathione S-transferase-pi, and topoisomerase II) and their interrelationship to proto-oncogene products in renal cell carcinomas. Cancer 71, 3981–3987 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Hussain, S. A. & James, N. D. Molecular markers in bladder cancer. Semin. Radiat. Oncol. 15, 3–9 (2005).

    Article  PubMed  Google Scholar 

  77. Tew, K. D., Dutta, S. & Schultz, M. Inhibitors of glutathione S-transferases as therapeutic agents. Adv. Drug Deliv. Rev. 26, 91–104 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Adler, V. et al. Regulation of JNK signaling by GSTp. EMBO J. 18, 1321–1334 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tew, K. D. TLK-286: a novel glutathione S-transferase-activated prodrug. Expert Opin. Investig. Drugs 14, 1047–1054 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Vergote, I. et al. Single agent, canfosfamide (C, TLK286) vs pegylated liposomal doxorubicin (D) or topotecan (T) in 3rd-line treatment of platinum (P) refractory or resistant ovarian cancer (OC): phase 3 study results [Abstract]. J. Clin. Oncol. 25 (18 Suppl.), LBA5528 (2007).

    Google Scholar 

  81. Byun, S. S., Kim, S. W., Choi, H., Lee, C. & Lee, E. Augmentation of cisplatin sensitivity in cisplatin-resistant human bladder cancer cells by modulating glutathione concentrations and glutathione-related enzyme activities. BJU Int. 95, 1086–1990 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Lafuente, A. et al. Limitations in the use of glutathione S-transferase P1 in urine as a marker for bladder cancer. Anticancer Res. 18, 3771–3772 (1998).

    CAS  PubMed  Google Scholar 

  83. Berendsen, C. L., Mulder, T. P. & Peters, W. H. Plasma glutathione S-transferase pi 1–1 AND alpha 1–1 levels in patients with bladder cancer. J. Urol. 164, 2126–2128 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Stenzl, A. et al. The updated EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur. Urol. 55, 815–825 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (145009DJ) from the Serbian Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Simic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simic, T., Savic-Radojevic, A., Pljesa-Ercegovac, M. et al. Glutathione S-transferases in kidney and urinary bladder tumors. Nat Rev Urol 6, 281–289 (2009). https://doi.org/10.1038/nrurol.2009.49

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2009.49

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing