Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rejuvenating the immune system in rheumatoid arthritis

Abstract

In rheumatoid arthritis (RA), the aging process of the immune system is accelerated. Formerly, this phenomenon was suspected to be a consequence of chronic inflammatory activity. However, newer data strongly suggest that deficiencies in maintaining telomeres and overall DNA stability cause excessive apoptosis of RA T cells, imposing proliferative pressure and premature aging on the system. Already during the early stages of their life cycle, and long before they participate in the inflammatory process, RA T cells are lost owing to increased apoptotic susceptibility. A search for underlying mechanisms has led to the discovery of defective pathways of repairing broken DNA and elongating and protecting telomeric sequences at the chromosomal ends. Two enzymatic machineries devoted to DNA repair and maintenance have been implicated. RA T cells fail to induce sufficient amounts of the telomeric repair enzyme telomerase, leaving telomeric ends uncapped and thus susceptible to damage. Of equal importance, RA T cells produce low levels of the DNA repair enzyme ataxia telangiectasia mutated and the complex of nucleoproteins that sense and fix DNA double-strand breaks. The inability to repair damaged DNA renders naive T cells vulnerable to apoptosis, exhausts T-cell regeneration and reshapes the T cell repertoire. Therapeutic attempts to reset the immune systems of patients with RA and prevent premature immunosenescence should include restoration of DNA repair capability.

Key Points

  • In rheumatoid arthritis (RA) naive T cells have shortened telomeres and contracted diversity, and memory T cells reach their differentiation potential, lose CD28 and acquire alternative regulator receptors

  • In RA, T cells' telomeric maintenance is dysfunctional, owing to insufficient production of the repair enzyme telomerase

  • RA T cells have a high load of DNA double-strand breaks, jeopardizing DNA integrity and cell survival

  • The failure to repair damaged DNA is caused by deficiency of the ataxia telangiectasia mutated (ATM)–MRE11–RAD50–NBS1 DNA repair machinery; mutations in ATM cause the immunodeficiency syndrome ataxia telangiectasia

  • The inability to maintain telomeric integrity and to repair broken DNA leads to excessive apoptotic death of RA T cells, and places the immune system under chronic proliferative stress

  • Recognizing that molecular deficiencies in nuclear stability can exhaust immune regeneration and lead to premature immune aging could change the pathogenetic concept of RA and advance the pursuit of novel therapies

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defective telomeric repair and impaired clonal expansion in RA T cells.
Figure 2: Insufficient telomeric protection in RA T cells.
Figure 3: RA T cells accumulate unrepaired DNA double-strand breaks, the most lethal DNA lesion.
Figure 4: DNA instability in naive RA T cells.
Figure 5: DNA instability and autoreactivity in RA.

Similar content being viewed by others

References

  1. Cope, A. P. T cells in rheumatoid arthritis. Arthritis. Res. Ther. 10 (Suppl. 1), S1 (2008).

    Article  PubMed  Google Scholar 

  2. Brennan, F. M. & McInnes, I. B. Evidence that cytokines play a role in rheumatoid arthritis. J. Clin. Invest. 118, 3537–3545 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Isaacs, J. D. Therapeutic T-cell manipulation in rheumatoid arthritis: past, present and future. Rheumatology (Oxford) 47, 1461–1468 (2008).

    Article  CAS  Google Scholar 

  4. Naz, S. M. & Symmons, D. P. Mortality in established rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 21, 871–883 (2007).

    Article  PubMed  Google Scholar 

  5. Gabriel, S. E. Why do people with rheumatoid arthritis still die prematurely? Ann. Rheum. Dis. 67 (Suppl. 3), iii30–iii34 (2008).

    PubMed Central  PubMed  Google Scholar 

  6. Goronzy, J. J. & Weyand, C. M. Rheumatoid arthritis. Immunol. Rev. 204, 55–73 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Montecucco, F. & Mach, F. Common inflammatory mediators orchestrate pathophysiological processes in rheumatoid arthritis and atherosclerosis. Rheumatology (Oxford) 48, 11–22 (2009).

    Article  CAS  Google Scholar 

  8. Warrington, K. J. et al. Rheumatoid arthritis is an independent risk factor for multi-vessel coronary artery disease: a case control study. Arthritis Res. Ther. 7, R984–R991 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Doran, M. F., Pond, G. R., Crowson, C. S., O'Fallon, W. M. & Gabriel, S. E. Trends in incidence and mortality in rheumatoid arthritis in Rochester, Minnesota, over a forty-year period. Arthritis Rheum. 46, 625–631 (2002).

    Article  Google Scholar 

  10. Dorshkind, K., Montecino-Rodriguez, E. & Signer, R. A. The ageing immune system: is it ever too old to become young again? Nat. Rev. Immunol. 9, 57–62 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Larbi, A., Fulop, T. & Pawelec, G. Immune receptor signaling, aging and autoimmunity. Adv. Exp. Med. Biol. 640, 312–324 (2008).

    Article  CAS  Google Scholar 

  12. Weyand, C. M. & Goronzy, J. J. Stem cell aging and autoimmunity in rheumatoid arthritis. Trends Mol. Med. 10, 426–433 (2004).

    Article  CAS  Google Scholar 

  13. Minamino, T. & Komuro, I. Vascular aging: insights from studies on cellular senescence, stem cell aging, and progeroid syndromes. Nat. Clin. Pract. Cardiovasc. Med. 5, 637–648 (2008).

    Article  CAS  Google Scholar 

  14. Flavell, S. J. et al. Fibroblasts as novel therapeutic targets in chronic inflammation. Br. J. Pharmacol. 153 (Suppl. 1), S241–S466 (2008).

    CAS  Google Scholar 

  15. Miossec, P. Dynamic interactions between T cells and dendritic cells and their derived cytokines/chemokines in the rheumatoid synovium. Arthritis Res. Ther. 10 (Suppl.) 1, S2 (2008).

    Google Scholar 

  16. Yanaba, K. et al. B-lymphocyte contributions to human autoimmune disease. Immunol. Rev. 223, 284–299 (2008).

    Article  CAS  Google Scholar 

  17. Weyand, C. M., Fulbright, J. W. & Goronzy, J. J. Immunosenescence, autoimmunity, and rheumatoid arthritis. Exp. Gerontol. 38, 833–841 (2003).

    Article  CAS  Google Scholar 

  18. Fujii, H., Shao, L., Colmegna, I., Goronzy, J. J. & Weyand, C. M. Telomerase insufficiency in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 106, 4360–4365 (2009).

    Article  CAS  Google Scholar 

  19. Shao, L. et al. Deficiency of the DNA repair enzyme ATM in rheumatoid arthritis. J. Exp. Med. 206, 1435–1449 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Jendro, M. C., Ganten, T., Matteson, E. L., Weyand, C. M. & Goronzy, J. J. Emergence of oligoclonal T cell populations following therapeutic T cell depletion in rheumatoid arthritis. Arthritis Rheum. 38, 1242–1251 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Brett, S. et al. Repopulation of blood lymphocyte sub-populations in rheumatoid arthritis patients treated with the depleting humanized monoclonal antibody, CAMPATH-1H. Immunology 88, 13–19 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Lorenzi, A. R. et al. Morbidity and mortality in rheumatoid arthritis patients with prolonged therapy-induced lymphopenia: twelve-year outcomes. Arthritis Rheum. 58, 370–375 (2008).

    Article  PubMed  Google Scholar 

  23. Naylor, K. et al. The influence of age on T cell generation and TCR diversity. J. Immunol. 174, 7446–7452 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Schonland, S. O. et al. Homeostatic control of T-cell generation in neonates. Blood 102, 1428–1434 (2003).

    Article  PubMed  Google Scholar 

  25. Wagner, U. G., Koetz, K., Weyand, C. M. & Goronzy, J. J. Perturbation of the T cell repertoire in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 95, 14447–14452 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Koetz, K. et al. T cell homeostasis in patients with rheumatoid arthritis. Proc. Natl Acad. Sci. USA 97, 9203–9208 (2000).

    Article  CAS  Google Scholar 

  27. Ponchel, F. et al. Dysregulated lymphocyte proliferation and differentiation in patients with rheumatoid arthritis. Blood 100, 4550–4556 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Weyand, C. M. & Goronzy, J. J. T-cell-targeted therapies in rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 2, 201–210 (2006).

    Article  CAS  Google Scholar 

  29. Schmidt, D., Goronzy, J. J. & Weyand, C. M. CD4+CD7CD28 T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. J. Clin. Invest. 97, 2027–2037 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Liuzzo, G. et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation 101, 2883–2888 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Steer, S. E. et al. Reduced telomere length in rheumatoid arthritis is independent of disease activity and duration. Ann. Rheum. Dis. 66, 476–480 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Salmon, M. & Akbar, A. N. Telomere erosion: a new link between HLA DR4 and rheumatoid arthritis? Trends Immunol. 25, 339–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Palm, W. & de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 42, 301–334 (2008).

    Article  CAS  Google Scholar 

  34. Sabourin, M. et al. Yeast recombination pathways triggered by topoisomerase II-mediated DNA breaks. Nucleic Acids Res. 31, 4373–4384 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Schonland, S. O. et al. Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. Proc. Natl Acad. Sci. USA 100, 13471–13476 (2003).

    Article  Google Scholar 

  36. Colmegna, I. et al. Defective proliferative capacity and accelerated telomeric loss of hematopoietic progenitor cells in rheumatoid arthritis. Arthritis Rheum. 58, 990–1000 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Park, J. I. et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 460, 66–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Cohn, M. A. & D'Andrea, A. D. Chromatin recruitment of DNA repair proteins: lessons from the fanconi anemia and double-strand break repair pathways. Mol. Cell 32, 306–312 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Kitagawa, R. & Kastan, M. B. The ATM-dependent DNA damage signaling pathway. Cold Spring Harb. Symp. Quant. Biol. 70, 99–109 (2005).

    Article  CAS  Google Scholar 

  40. Lavin, M. F. ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks. Oncogene 26, 7749–7758 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Cimprich, K. A. & Cortez, D. ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9, 616–627 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Andrews, N. P., Goronzy, J. J. & Weyand, C. M. Telomeres in immunological diseases of aging. Gerontology (in press).

  43. Siddiqa, A., Cavazos, D. A. & Marciniak, R. A. Targeting telomerase. Rejuvenation Res. 9, 378–390 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Hahn, W. C. & Meyerson, M. Telomerase activation, cellular immortalization and cancer. Ann. Med. 33, 123–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Lo, H. W., Day, C. P. & Hung, M. C. Cancer-specific gene therapy. Adv. Genet. 54, 235–255 (2005).

    CAS  PubMed  Google Scholar 

  46. Lavin, M. F. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat. Rev. Mol. Cell Biol. 9, 759–769 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Lavin, M. F. et al. ATM and cellular response to DNA damage. Adv. Exp. Med. Biol. 570, 457–476 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Lavin, M. F. & Shiloh, Y. The genetic defect in ataxia-telangiectasia. Annu. Rev. Immunol. 15, 177–202 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Maclean, K. H., Kastan, M. B. & Cleveland, J. L. ATM deficiency affects both apoptosis and proliferation to augment Myc-induced lymphomagenesis. Mol. Cancer Res. 5, 705–711 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Linda Arneson and Tamela Yeargin for their editorial support. This work was funded in part by grants from the NIH (AR 42527, AR 41974, AI 44142, AI 57266, AG 15043) and the “Within Our Reach” campaign of the American College of Rheumatology Research and Education Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia M. Weyand.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weyand, C., Fujii, H., Shao, L. et al. Rejuvenating the immune system in rheumatoid arthritis. Nat Rev Rheumatol 5, 583–588 (2009). https://doi.org/10.1038/nrrheum.2009.180

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.180

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing