Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: angiogenesis in inflammatory diseases

Abstract

Angiogenesis, the development of new vessels, is an important process in health and disease. The perpetuation of neovascularization in inflammatory diseases, such as rheumatoid arthritis, spondyloarthropathies and some systemic autoimmune diseases, might facilitate the ingress of inflammatory cells into the synovium and, therefore, stimulate pannus formation. Disorders associated with perpetuated neovascularization are considered to be angiogenic inflammatory diseases. Several angiogenic mediators, including growth factors, cytokines, matrix metalloproteinases, matrix macromolecules, cell adhesion receptors, chemokines and chemokine receptors, have been implicated in the process of capillary formation. There is a regulatory network in inflamed tissues that is involved in the upregulation or downregulation of angiogenesis. Endogenous angiostatic factors downregulate neovascularization and might act as angiostatic agents. Furthermore, angiogenesis might be targeted by several specific approaches that could be therapeutically used to control inflammatory diseases.

Key Points

  • Angiogenesis, the formation of new vessels, is a key mechanism involved in leukocyte ingress through the vascular endothelium into sites of inflammation

  • Numerous inflammatory rheumatic diseases, including rheumatoid arthritis, spondyloarthropathies and systemic lupus erythematosus, can be considered to be angiogenic diseases, as they are associated with intensive angiogenesis

  • In inflammation, there is an imbalance between angiogenic and angiostatic mediators, leading to the perpetuation of neovascularization

  • Angiogenic mediators and inhibitors include cytokines, chemokines, growth factors, adhesion molecules, proteases, and synthetic compounds

  • There is a regulatory network in inflamed tissues, which is involved in the control of angiogenesis

  • Specific targeting of angiogenesis might be used as a therapeutic approach to control inflammation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The angiogenic process and mediators of angiogenesis.
Figure 2: Inhibitors of angiogenesis and therapeutic targets.

Similar content being viewed by others

References

  1. Koch AE (1998) Angiogenesis: implications for rheumatoid arthritis. Arthritis Rheum 41: 951–962

    Article  CAS  Google Scholar 

  2. Szekanecz Z, Koch AE (2001) Chemokines and angiogenesis. Curr Opin Rheumatol 13: 202–208

    Article  CAS  Google Scholar 

  3. Bodolay E et al. (2002) Angiogenesis and chemokines in rheumatoid arthritis and other systemic inflammatory rheumatic diseases. J Cell Mol Med 6: 357–376

    Article  CAS  Google Scholar 

  4. Auerbach W, Auerbach R (1994) Angiogenesis inhibition: a review. Pharmacol Ther 63: 265–311

    Article  CAS  Google Scholar 

  5. Szekanecz Z et al. (2005) Angiogenesis in rheumatoid arthritis. Front Biosci 10: 1739–1753

    Article  CAS  Google Scholar 

  6. Walsh DA (1999) Angiogenesis and arthritis. Rheumatology (Oxford) 38: 103–114

  7. Veale DJ, Fearon U (2006) Inhibition of angiogenic pathways in rheumatoid arthritis: potential for therapeutic targeting. Best Pract Res Clin Rheumatol 20: 941–947

    Article  CAS  Google Scholar 

  8. Distler JH et al. (2006) Angiogenesis and vasculogenesis in systemic sclerosis. Rheumatology (Oxford) 45 Suppl 3: iii26–iii27

    CAS  Google Scholar 

  9. Murakami M et al. (2006) Signalling of vascular endothelial growth factor receptor 1 tyrosine kinase promotes rheumatoid arthritis through the activation of monocytes/macrophages. Blood 108: 1849–1856

    Article  CAS  Google Scholar 

  10. Yin G et al. (2002) Endostatin gene transfer inhibits joint angiogenesis and pannus formation in inflammatory arthritis. Mol Ther 5: 547–554

    Article  CAS  Google Scholar 

  11. Agarwal SK, Brenner MB (2006) Role of adhesion molecules in synovial inflammation. Curr Opin Rheumatol 18: 268–276

    Article  CAS  Google Scholar 

  12. Szekanecz Z et al. (1998) Cytokines in rheumatoid arthritis: potential targets for pharmacological intervention. Drugs Aging 12: 377–390

    Article  CAS  Google Scholar 

  13. Brennan F, Beech J (2007) Update on cytokines in rheumatoid arthritis. Curr Opin Rheumatol 19: 296–301

    Article  CAS  Google Scholar 

  14. Szekanecz Z, Koch AE (2007) Macrophages and their products in rheumatoid arthritis. Curr Opin Rheumatol 19: 289–295

    Article  Google Scholar 

  15. Cotran RS, Pober JS (1990) Cytokine-endothelial interactions in inflammation, immunity and vascular injury. J Am Soc Nephrol 1: 225–235

    CAS  PubMed  Google Scholar 

  16. Szekanecz Z, Koch AE (2004) Vascular endothelium and immune responses: implications for inflammation and angiogenesis. Rheum Dis Clin N Am 30: 97–114

    Article  Google Scholar 

  17. Koch AE et al. (1994) Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J Immunol 152: 4149–4156

    CAS  PubMed  Google Scholar 

  18. Kiselyov A et al. (2007) VEGF/VEGFR signaling as a target for inhibiting angiogenesis. Expert Opin Investig Drugs 16: 83–107

    Article  CAS  Google Scholar 

  19. Hernandez GL et al. (2001) Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J Exp Med 193: 607–612

    Article  CAS  Google Scholar 

  20. Giatromanolaki A et al. (2003) Upregulated hypoxia inducible factor-1α and -2α pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 5: R193–R198

    Article  CAS  Google Scholar 

  21. Park CC et al. (2001) Evidence of IL-18 as a novel angiogenic mediator. J Immunol 167: 1644–1653

    Article  CAS  Google Scholar 

  22. Angiolillo AL et al. (1997) Interleukin-15 promotes angiogenesis in vivo. Biochem Biophys Res Commun 233: 231–237

    Article  CAS  Google Scholar 

  23. Numasaki M et al. (2005) IL-17 enhances the net angiogenic activity and In vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR2-dependent angiogenesis. J Immunol 175: 6177–6189

    Article  CAS  Google Scholar 

  24. Markham T et al. (2006) Regulation of endothelial activation and down-regulation of Tie2 receptor in psoriatic skin after infliximab therapy. J Am Acad Dermatol 54: 1003–1012

    Article  Google Scholar 

  25. Fearon U et al. (2006) Oncostatin M induces angiogenesis and cartilage degradation in rheumatoid arthritis synovial tissue and human cartilage cocultures. Arthritis Rheum 54: 3152–3162

    Article  CAS  Google Scholar 

  26. Amin MA et al. (2003) Migration inhibitory factor mediates angiogenesis via mitogen-activated protein kinase and phosphatidylinositol kinase. Circ Res 93: 321–329

    Article  CAS  Google Scholar 

  27. Morand EF et al. (2006) MIF: a new cytokine link between rheumatoid arthritis and atherosclerosis. Nat Rev Drug Discov 5: 399–410

    Article  CAS  Google Scholar 

  28. Kim HR et al. (2007) Macrophage migration inhibitory factor upregulates angiogenic factors and correlates with clinical measures in rheumatoid arthritis. J Rheumatol 34: 927–936

    CAS  Google Scholar 

  29. Strieter RM et al. (1995) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270: 27348–27357

    Article  CAS  Google Scholar 

  30. Pablos JL et al. (2003) Synoviocyte-derived CXCL12 is displayed on endothelium and induces angiogenesis in rheumatoid arthritis. J Immunol 170: 2147–2152

    Article  CAS  Google Scholar 

  31. Salcedo R et al. (2000) Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 96: 34–40

    CAS  Google Scholar 

  32. Stamatovic SM et al. (2006) CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J Immunol 177: 2651–2661

    Article  CAS  Google Scholar 

  33. Nanki T et al. (2000) Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T-cell accumulation in rheumatoid arthritis synovium. J Immunol 165: 6590–6598

    Article  CAS  Google Scholar 

  34. Madri JA, Williams KS (1983) Capillary endothelial cell cultures: phenotypic modulation by matrix components. J Cell Biol 97: 153–165

    Article  CAS  Google Scholar 

  35. Hong KH et al. (2007) Effect of interleukin-4 on vascular endothelial growth factor production in rheumatoid synovial fibroblasts. Clin Exp Immunol 147: 573–579

    Article  CAS  Google Scholar 

  36. Boulday G et al. (2006) Vascular endothelial growth factor-induced signaling pathways in endothelial cells that mediate overexpression of the chemokine IFN-gamma-inducible protein of 10 kDa In vitro and in vivo. J Immunol 176: 3098–3107

    Article  CAS  Google Scholar 

  37. Komano Y et al. (2006) Identification of a human peripheral blood monocyte subset that differentiates into osteoclasts. Arthritis Res Ther 8: R152–R158

    Article  Google Scholar 

  38. Senger DR et al. (1997) Angiogenesis promoted by vascular endothelial growth factor: regulation through α1β1 and α2β1 integrins. Proc Natl Acad Sci USA 94: 13612–13617

    Article  CAS  Google Scholar 

  39. Cho ML et al. (2007) Toll-like receptor 2 ligand mediates the upregulation of angiogenic factor, vascular endothelial growth factor and interleukin-8/CXCL8 in human rheumatoid synovial fibroblasts. Immunol Lett 108: 121–128

    Article  CAS  Google Scholar 

  40. Jones PB et al. (1994) Endothelial cell stimulating angiogenesis factor a new biological marker for disease activity in ankylosing spondylitis? Br J Rheumatol 33: 332–335

    Article  CAS  Google Scholar 

  41. Drouart M et al. (2003) High serum vascular endothelial growth factor correlates with disease activity in spondylarthropathies. Clin Exp Immunol 132: 158–162

    Article  CAS  Google Scholar 

  42. Robak E et al. (2002) Circulating angiogenesis inhibitor endostatin and positive endothelial growth regulators in patients with systemic lupus erythematosus. Lupus 11: 348–355

    Article  CAS  Google Scholar 

  43. Koch AE et al. (1992) Decreased monocyte-mediated angiogenesis in scleroderma. Clin Immunol Immunopathol 64: 153–163

    Article  CAS  Google Scholar 

  44. Hebbar M et al. (2000) Increased concentrations of the circulating angiogenesis inhibitor endostatin in patients with systemic sclerosis. Arthritis Rheum 43: 889–896

    Article  CAS  Google Scholar 

  45. Margheri F et al. (2006) Domain 1 of the urokinase-type plasminogen activator receptor is required for its morphological, functional β2 integrin-mediated connection with actin cytoskeleton in human microvascular endothelial cells: failure of association in systemic sclerosis endothelial cells. Arthritis Rheum 54: 3926–3938

    Article  CAS  Google Scholar 

  46. Konttinen YT et al. (2004) Disease-associated increased HIF-1, αVβ3 integrin and Flt-1 do not suffice to compensate the damage-inducing loss of blood vessels in inflammatory myopathies. Rheumatol Int 24: 333–339

    Article  Google Scholar 

  47. Terai M et al. (1999) Vascular endothelial growth factor in acute Kawasaki disease. Am J Cardiol 83: 337–343

    Article  CAS  Google Scholar 

  48. Csernok E et al. (1996) Transforming growth factor-β (TGF-β) expression and interaction with proteinase 3 (PR3) in anti-neutrophil cytoplasmic antibody (ANCA).associated vasculitis. Clin Exp Immunol 105: 104–109

    Article  CAS  Google Scholar 

  49. Cid MC et al. (2002) Tissue and serum angiogenic activity is associated with low prevalence of ischemic complications in patients with giant-cell arteritis. Circulation 106: 1664–1671

    Article  Google Scholar 

  50. Guttmann-Raviv N et al. (2007) Semaphorin-3A and semaphoring-3F work together to repel endothelial cells and to inhibit their survival by induction of apoptosis. J Biol Chem 282: 26294–26305

    Article  CAS  Google Scholar 

  51. Goedkoop AY et al. (2004) Deactivation of endothelium and reduction in angiogenesis in psoriatic skin and synovium by low dose infliximab therapy in combination with stable methotrexate therapy. Arthritis Res Ther 6: R326–R334

    Article  CAS  Google Scholar 

  52. Bongartz T et al. (2005) Treatment of active psoriatic arthritis with the PPARγ ligand pioglitazone: an open-label pilot study. Rheumatology 44: 126–129

    Article  CAS  Google Scholar 

  53. Haas CS et al. (2006) Inhibition of angiogenesis by interleukin-4 gene therapy in rat adjuvant-induced arthritis. Arthritis Rheum 54: 2402–2414

    Article  CAS  Google Scholar 

  54. Manley PW et al. (2002) Therapies directed at vascular endothelial growth factor. Expert Opin Investig Drugs 11: 1715–1736

    Article  CAS  Google Scholar 

  55. Wente MN et al. (2006) Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis. Cancer Lett 241: 221–227

    Article  CAS  Google Scholar 

  56. Skotnicki JS et al. (1999) Design and synthetic considerations of matrix metalloproteinase inhibitors. Ann NY Acad Sci 878: 61–72

    Article  CAS  Google Scholar 

  57. Kim WU et al. (2007) Soluble Fas ligand inhibits angiogenesis in rheumatoid arthritis. Arthritis Res Ther 26: 9:R42

    Google Scholar 

  58. Woods JM et al. (2003) The role of COX-2 in angiogenesis and rheumatoid arthritis. Exp Mol Pathol 74: 282–290

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants (AEK), the William D Robinson, MD and Frederick GL Huetwell Endowed Professorship (AEK), funds from the Veterans' Administration (AEK); and a grant from the National Scientific Research Fund (OTKA; Z.S.). We are sorry that, due to space limitations, we were not able to include more references from key contributors in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Szekanecz.

Ethics declarations

Competing interests

AE Koch has acted as a Consultant for Actelion Ltd, Astra Zeneca PLC, Clinical Advisors LLC, Genentech, Inc, Gerson Lehrman Group, Incyte Corporation, Micromet, Predix Pharmaceuticals, Proctor and Gamble, and TAP pharmaceutical Products Inc. She has received research support from the NIH, Predix Pharmaceuticals, TAP pharmaceutical Products Inc. and the Veterans Administration. Z Szekanecz declared no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szekanecz, Z., Koch, A. Mechanisms of Disease: angiogenesis in inflammatory diseases. Nat Rev Rheumatol 3, 635–643 (2007). https://doi.org/10.1038/ncprheum0647

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncprheum0647

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing