Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The endothelium–bone axis in development, homeostasis and bone and joint disease

Abstract

Blood vessels form a versatile transport network that is best known for its critical roles in processes such as tissue oxygenation, metabolism and immune surveillance. The vasculature also provides local, often organ-specific, molecular signals that control the behaviour of other cell types in their vicinity during development, homeostasis and regeneration, and also in disease processes. In the skeletal system, the local vasculature is actively involved in both bone formation and resorption. In addition, blood vessels participate in inflammatory processes and contribute to the pathogenesis of diseases that affect the joints, such as rheumatoid arthritis and osteoarthritis. This Review summarizes the current understanding of the architecture, angiogenic growth and functional properties of the bone vasculature. The effects of ageing and pathological conditions, including arthritis and osteoporosis, are also discussed.

Key points

  • The vascular system is essential for bone development and growth.

  • Capillary endothelial cells consist of multiple subpopulations with distinct molecular and functional properties.

  • The type H endothelial subpopulation communicates with chondrocytes and perivascular osteoblast lineage cells during development and fracture repair, and type H capillaries are reduced in ageing and osteoporosis.

  • Blood vessels influence the behaviour of fibroblast-like synoviocytes and macrophages in the arthritic joint.

  • Pre-osteoclasts secrete factors that affect bone angiogenesis and the abundance of type H endothelial cells.

  • Interdependent crosstalk between endothelial cells and other cell populations in bone might provide novel entry points for anti-osteoporotic therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Organization of the bone vasculature during development.
Fig. 2: Blood flow in long bones.
Fig. 3: Osteoclast–endothelial cell crosstalk.
Fig. 4: Vasculature, fibroblast-like synoviocyte and macrophage interactions in RA.
Fig. 5: Remodelling of the bone vasculature in adult life and ageing.

Similar content being viewed by others

References

  1. Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8, 464–478 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Lammert, E. & Axnick, J. Vascular lumen formation. Cold Spring Harb. Perspect. Med. 2, a006619 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Aspelund, A., Robciuc, M. R., Karaman, S., Makinen, T. & Alitalo, K. Lymphatic system in cardiovascular medicine. Circ. Res. 118, 515–530 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Oliver, G., Kipnis, J., Randolph, G. J. & Harvey, N. L. The lymphatic vasculature in the 21(st) century: novel functional roles in homeostasis and disease. Cell 182, 270–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, W. et al. Lymphatic endothelial cells produce M-CSF, causing massive bone loss in mice. J. Bone Min. Res. 32, 939–950 (2017).

    Article  CAS  Google Scholar 

  6. Hominick, D. et al. VEGF-C promotes the development of lymphatics in bone and bone loss. eLife 7, e34323 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Carulli, C., Innocenti, M. & Brandi, M. L. Bone vascularization in normal and disease conditions. Front. Endocrinol. 4, 106 (2013).

    Article  Google Scholar 

  8. Gadomski, S. et al. Id1 and Id3 maintain steady-state hematopoiesis by promoting sinusoidal endothelial cell survival and regeneration. Cell Rep. 31, 107572 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matthews, A. H., Davis, D. D., Fish, M. J. & Stitson, D. in StatPearls (Treasure Island (FL): StatPearls Publishing, 2020).

  10. Gadinsky, N. E. et al. Femoral head vascularity: implications following trauma and surgery about the hip. Orthopedics 42, 250–257 (2019).

    Article  PubMed  Google Scholar 

  11. Trueta, J. Blood supply and the rate of healing of tibial fractures. Clin. Orthop. Relat. Res. 105, 11–26 (1974).

    Article  Google Scholar 

  12. Peng, Y., Wu, S., Li, Y. & Crane, J. L. Type H blood vessels in bone modeling and remodeling. Theranostics 10, 426–436 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ashraf, S. & Walsh, D. A. Angiogenesis in osteoarthritis. Curr. Opin. Rheumatol. 20, 573–580 (2008).

    Article  PubMed  Google Scholar 

  14. Nolan, D. J. et al. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev. Cell 26, 204–219 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Marcu, R. et al. Human organ-specific endothelial cell heterogeneity. iScience 4, 20–35 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cleuren, A. C. A. et al. The in vivo endothelial cell translatome is highly heterogeneous across vascular beds. Proc. Natl Acad. Sci. USA 116, 23618–23624 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Potente, M. & Makinen, T. Vascular heterogeneity and specialization in development and disease. Nat. Rev. Mol. Cell Biol. 18, 477–494 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Augustin, H. G. & Koh, G. Y. Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology. Science 357, eaal2379 (2017).

    Article  PubMed  CAS  Google Scholar 

  19. Rafii, S., Butler, J. M. & Ding, B. S. Angiocrine functions of organ-specific endothelial cells. Nature 529, 316–325 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matsumoto, K., Yoshitomi, H., Rossant, J. & Zaret, K. S. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294, 559–563 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Lammert, E., Cleaver, O. & Melton, D. Induction of pancreatic differentiation by signals from blood vessels. Science 294, 564–567 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Ding, B. S. et al. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 147, 539–553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ding, B. S. et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468, 310–315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu, J. et al. Endothelial cell-derived angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat. Science 343, 416–419 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Shen, Q. et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3, 289–300 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tavazoie, M. et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3, 279–288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yoshida, S., Sukeno, M. & Nabeshima, Y. A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317, 1722–1726 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Christov, C. et al. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol. Biol. Cell 18, 1397–1409 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, B., Zhao, L., Fish, M., Logan, C. Y. & Nusse, R. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature 524, 180–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Acar, M. et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526, 126–130 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kunisaki, Y. et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502, 637–643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Duarte, D. et al. Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML. Cell Stem Cell 22, 64–77.E6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ramasamy, S. K., Kusumbe, A. P., Wang, L. & Adams, R. H. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507, 376–380 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maes, C. et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev. Cell 19, 329–344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clarkin, C. & Olsen, B. R. On bone-forming cells and blood vessels in bone development. Cell Metab. 12, 314–316 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zelzer, E. & Olsen, B. R. The genetic basis for skeletal diseases. Nature 423, 343–348 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Simons, M., Gordon, E. & Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol. 17, 611–625 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Duan, X. et al. Vegfa regulates perichondrial vascularity and osteoblast differentiation in bone development. Development 142, 1984–1991 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hu, K. & Olsen, B. R. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J. Clin. Invest. 126, 509–526 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Maes, C. et al. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech. Dev. 111, 61–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Zelzer, E. et al. Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 129, 1893–1904 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Thompson, T. J., Owens, P. D. & Wilson, D. J. Intramembranous osteogenesis and angiogenesis in the chick embryo. J. Anat. 166, 55–65 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wacker, A. & Gerhardt, H. Endothelial development taking shape. Curr. Opin. Cell Biol. 23, 676–685 (2011).

    CAS  PubMed  Google Scholar 

  46. Maes, C. et al. Increased skeletal VEGF enhances beta-catenin activity and results in excessively ossified bones. EMBO J. 29, 424–441 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Maes, C. et al. Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. J. Clin. Invest. 113, 188–199 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramasamy, S. K. et al. Blood flow controls bone vascular function and osteogenesis. Nat. Commun. 7, 13601 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Trueta, J. & Morgan, J. D. The vascular contribution to osteogenesis. I. Studies by the injection method. J. Bone Jt. Surg. Br. 42-B, 97–109 (1960).

    Article  CAS  Google Scholar 

  50. Aharinejad, S. et al. Microvascular pattern in the metaphysis during bone growth. Anat. Rec. 242, 111–122 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Skawina, A., Litwin, J. A., Gorczyca, J. & Miodonski, A. J. The vascular system of human fetal long bones: a scanning electron microscope study of corrosion casts. J. Anat. 185, 369–376 (1994).

    PubMed  PubMed Central  Google Scholar 

  52. Wilson, A., Hodgson-Garms, M., Frith, J. E. & Genever, P. Multiplicity of mesenchymal stromal cells: finding the right route to therapy. Front. Immunol. 10, 1112 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tikhonova, A. N. et al. The bone marrow microenvironment at single-cell resolution. Nature 569, 222–228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Baryawno, N. et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177, 1915–1932 e1916 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Langen, U. H. et al. Cell-matrix signals specify bone endothelial cells during developmental osteogenesis. Nat. Cell Biol. 19, 189–201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kusumbe, A. P. et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532, 380–384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Morini, M. F. & Dejana, E. Transcriptional regulation of arterial differentiation via Wnt, Sox and Notch. Curr. Opin. Hematol. 21, 229–234 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Roca, C. & Adams, R. H. Regulation of vascular morphogenesis by Notch signaling. Genes Dev. 21, 2511–2524 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Ehling, M., Adams, S., Benedito, R. & Adams, R. H. Notch controls retinal blood vessel maturation and quiescence. Development 140, 3051–3061 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Xu, C. et al. Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow. Nat. Commun. 9, 2449 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Asada, N. et al. Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat. Cell Biol. 19, 214–223 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bixel, M. G. et al. Flow dynamics and HSPC Homing in bone marrow microvessels. Cell Rep. 18, 1804–1816 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lo Celso, C., Lin, C. P. & Scadden, D. T. In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow. Nat. Protoc. 6, 1–14 (2011).

    Article  PubMed  CAS  Google Scholar 

  65. Itkin, T. et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532, 323–328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, J. et al. In situ mapping identifies distinct vascular niches for myelopoiesis. Nature 590, 457–462 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stucker, S., Chen, J., Watt, F. E. & Kusumbe, A. P. Bone angiogenesis and vascular niche remodeling in stress, aging, and diseases. Front. Cell Dev. Biol. 8, 602269 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chen, J., Hendriks, M., Chatzis, A., Ramasamy, S. K. & Kusumbe, A. P. Bone vasculature and bone marrow vascular niches in health and disease. J. Bone Min. Res. 35, 2103–2120 (2020).

    Article  CAS  Google Scholar 

  69. Bautch, V. L. Bone morphogenetic protein and blood vessels: new insights into endothelial cell junction regulation. Curr. Opin. Hematol. 26, 154–160 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Larrivee, B. et al. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev. Cell 22, 489–500 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu, R. et al. Targeting skeletal endothelium to ameliorate bone loss. Nat. Med. 24, 823–833 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, N. et al. Osteoclasts are not a source of SLIT3. Bone Res. 8, 11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ignatius, A. & Tuckermann, J. New horizons for osteoanabolic treatment? Nat. Rev. Endocrinol. 14, 508–509 (2018).

    Article  PubMed  Google Scholar 

  74. Sivaraj, K. K. et al. YAP1 and TAZ negatively control bone angiogenesis by limiting hypoxia-inducible factor signaling in endothelial cells. eLife 9, e50770 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim, J. et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J. Clin. Invest. 127, 3441–3461 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Neto, F. et al. YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development. eLife 7, e31037 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hooglugt, A., van der Stoel, M. M., Boon, R. A. & Huveneers, S. Endothelial YAP/TAZ signaling in angiogenesis and tumor vasculature. Front. Oncol. 10, 612802 (2020).

    Article  PubMed  Google Scholar 

  78. Yasuda, D. et al. Lysophosphatidic acid-induced YAP/TAZ activation promotes developmental angiogenesis by repressing Notch ligand Dll4. J. Clin. Invest. 129, 4332–4349 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wang, X. et al. YAP/TAZ orchestrate VEGF signaling during developmental angiogenesis. Dev. Cell 42, 462–478.e7 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Brookes, M. & Harrison, R. G. The vascularization of the rabbit femur and tibio-fibula. J. Anat. 91, 61–72 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Shim, S. S., Copp, D. H. & Patterson, F. P. Measurement of the rate and distribution of the nutrient and other arterial blood supply in long bones of the rabbit. A study of the relative contribution of the three arterial systems. J. Bone Jt. Surg. Br. 50, 178–183 (1968).

    Article  CAS  Google Scholar 

  82. de Saint-Georges, L. & Miller, S. C. The microcirculation of bone and marrow in the diaphysis of the rat hemopoietic long bones. Anat. Rec. 233, 169–177 (1992).

    Article  PubMed  Google Scholar 

  83. Fenichel, I., Evron, Z. & Nevo, Z. The perichondrial ring as a reservoir for precartilaginous cells. In vivo model in young chicks’ epiphysis. Int. Orthop. 30, 353–356 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Trueta, J. & Harrison, M. H. The normal vascular anatomy of the femoral head in adult man. J. Bone Jt. Surg. Br. 35-B, 442–461 (1953).

    Article  CAS  Google Scholar 

  85. Crock, H. V. A revision of the anatomy of the arteries supplying the upper end of the human femur. J. Anat. 99, 77–88 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rodriguez, J. I., Delgado, E. & Paniagua, R. Changes in young rat radius following excision of the perichondrial ring. Calcif. Tissue Int. 37, 677–683 (1985).

    Article  CAS  PubMed  Google Scholar 

  87. Bridgeman, G. & Brookes, M. Blood supply to the human femoral diaphysis in youth and senescence. J. Anat. 188, 611–621 (1996).

    PubMed  PubMed Central  Google Scholar 

  88. Gruneboom, A. et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat. Metab. 1, 236–250 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Herisson, F. et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci. 21, 1209–1217 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Spencer, J. A. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508, 269–273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Severe, N. et al. Stress-induced changes in bone marrow stromal cell populations revealed through single-cell protein expression mapping. Cell Stem Cell 25, 570–583.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xiao, Z. & Quarles, L. D. Physiological mechanisms and therapeutic potential of bone mechanosensing. Rev. Endocr. Metab. Disord. 16, 115–129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hemmatian, H., Bakker, A. D., Klein-Nulend, J. & van Lenthe, G. H. Aging, osteocytes, and mechanotransduction. Curr. Osteoporos. Rep. 15, 401–411 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Prasadam, I. et al. Osteocyte-induced angiogenesis via VEGF-MAPK-dependent pathways in endothelial cells. Mol. Cell Biochem. 386, 15–25 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Hu, K. & Olsen, B. R. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone 91, 30–38 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cheung, W. Y., Liu, C., Tonelli-Zasarsky, R. M., Simmons, C. A. & You, L. Osteocyte apoptosis is mechanically regulated and induces angiogenesis in vitro. J. Orthop. Res. 29, 523–530 (2011).

    Article  PubMed  Google Scholar 

  97. Oranger, A. et al. Sclerostin stimulates angiogenesis in human endothelial cells. Bone 101, 26–36 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Robling, A. G. et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J. Biol. Chem. 283, 5866–5875 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Tu, X. et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone 50, 209–217 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Liang, S. et al. The coupling of reduced type H vessels with unloading-induced bone loss and the protection role of Panax quinquefolium saponin in the male mice. Bone 143, 115712 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, X. et al. Mechanical loading stimulates bone angiogenesis through enhancing type H vessel formation and downregulating exosomal miR-214-3p from bone marrow-derived mesenchymal stem cells. FASEB J. 35, e21150 (2021).

    CAS  PubMed  Google Scholar 

  102. Sozen, T., Ozisik, L. & Basaran, N. C. An overview and management of osteoporosis. Eur. J. Rheumatol. 4, 46–56 (2017).

    Article  PubMed  Google Scholar 

  103. Goldring, S. R. & Gravallese, E. M. Mechanisms of bone loss in inflammatory arthritis: diagnosis and therapeutic implications. Arthritis Res. 2, 33–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Teitelbaum, S. L. Osteoclasts: what do they do and how do they do it? Am. J. Pathol. 170, 427–435 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jacome-Galarza, C. E. et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 568, 541–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Madel, M. B. et al. Immune function and diversity of osteoclasts in normal and pathological conditions. Front. Immunol. 10, 1408 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ibanez, L. et al. Inflammatory osteoclasts prime TNFalpha-producing CD4+ T cells and express CX3 CR1. J. Bone Min. Res. 31, 1899–1908 (2016).

    Article  CAS  Google Scholar 

  108. Kiesel, J. R., Buchwald, Z. S. & Aurora, R. Cross-presentation by osteoclasts induces FoxP3 in CD8+ T cells. J. Immunol. 182, 5477–5487 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Madel, M. B. et al. Dissecting the phenotypic and functional heterogeneity of mouse inflammatory osteoclasts by the expression of Cx3cr1. eLife 9, e54493 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cackowski, F. C. & Roodman, G. D. Perspective on the osteoclast: an angiogenic cell? Ann. N. Y. Acad. Sci. 1117, 12–25 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Cackowski, F. C. et al. Osteoclasts are important for bone angiogenesis. Blood 115, 140–149 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Romeo, S. G. et al. Endothelial proteolytic activity and interaction with non-resorbing osteoclasts mediate bone elongation. Nat. Cell Biol. 21, 430–441 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Xie, H. et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat. Med. 20, 1270–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lu, J. et al. Positive-feedback regulation of subchondral H-type vessel formation by chondrocyte promotes osteoarthritis development in mice. J. Bone Min. Res. 33, 909–920 (2018).

    Article  CAS  Google Scholar 

  115. Cui, Z. et al. Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone. Ann. Rheum. Dis. 75, 1714–1721 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Su, W. et al. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight 5, e135446 (2020).

    Article  PubMed Central  Google Scholar 

  117. Bohm, A. M. et al. Activation of skeletal stem and progenitor cells for bone regeneration is driven by PDGFRβ signaling. Dev. Cell 51, 236–254.e12 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Charbonneau, M. et al. Platelet-derived growth factor receptor activation promotes the prodestructive invadosome-forming phenotype of synoviocytes from patients with rheumatoid arthritis. J. Immunol. 196, 3264–3275 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Brun, J. et al. PDGF receptor signaling in osteoblast lineage cells controls bone resorption through upregulation of Csf1 expression. J. Bone Min. Res. 35, 2458–2469 (2020).

    Article  CAS  Google Scholar 

  120. Deckers, M. M. et al. Dissociation of angiogenesis and osteoclastogenesis during endochondral bone formation in neonatal mice. J. Bone Min. Res. 17, 998–1007 (2002).

    Article  Google Scholar 

  121. Balogh, E., Biniecka, M., Fearon, U., Veale, D. J. & Szekanecz, Z. Angiogenesis in inflammatory arthritis. Isr. Med. Assoc. J. 21, 345–352 (2019).

    PubMed  Google Scholar 

  122. Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572, 670–675 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Koenen, M. et al. Glucocorticoid receptor in stromal cells is essential for glucocorticoid-mediated suppression of inflammation in arthritis. Ann. Rheum. Dis. 77, 1610–1618 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. McDonough, A. K., Curtis, J. R. & Saag, K. G. The epidemiology of glucocorticoid-associated adverse events. Curr. Opin. Rheumatol. 20, 131–137 (2008).

    Article  PubMed  Google Scholar 

  127. van Staa, T. P., Leufkens, H. G. & Cooper, C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos. Int. 13, 777–787 (2002).

    Article  PubMed  Google Scholar 

  128. Van Staa, T. P., Leufkens, H. G., Abenhaim, L., Zhang, B. & Cooper, C. Use of oral corticosteroids and risk of fractures. J. Bone Min. Res. 15, 993–1000 (2000).

    Article  Google Scholar 

  129. Rauch, A. et al. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab. 11, 517–531 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Kim, H. J. et al. Glucocorticoids suppress bone formation via the osteoclast. J. Clin. Invest. 116, 2152–2160 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jia, D., O’Brien, C. A., Stewart, S. A., Manolagas, S. C. & Weinstein, R. S. Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology 147, 5592–5599 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Conaway, H. H., Henning, P., Lie, A., Tuckermann, J. & Lerner, U. H. Activation of dimeric glucocorticoid receptors in osteoclast progenitors potentiates RANKL induced mature osteoclast bone resorbing activity. Bone 93, 43–54 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Piemontese, M., Xiong, J., Fujiwara, Y., Thostenson, J. D. & O’Brien, C. A. Cortical bone loss caused by glucocorticoid excess requires RANKL production by osteocytes and is associated with reduced OPG expression in mice. Am. J. Physiol. Endocrinol. Metab. 311, E587–E593 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hartmann, K. et al. Molecular actions of glucocorticoids in cartilage and bone during health, disease, and steroid therapy. Physiol. Rev. 96, 409–447 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Weinstein, R. S. et al. The pathophysiological sequence of glucocorticoid-induced osteonecrosis of the femoral head in male mice. Endocrinology 158, 3817–3831 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Peng, Y. et al. Glucocorticoids disrupt skeletal angiogenesis through transrepression of NF-κB-mediated preosteoclast Pdgfb transcription in young mice. J. Bone Min. Res. 35, 1188–1202 (2020).

    Article  CAS  Google Scholar 

  137. Yang, P. et al. Preservation of type H vessels and osteoblasts by enhanced preosteoclast platelet-derived growth factor type BB attenuates glucocorticoid-induced osteoporosis in growing mice. Bone 114, 1–13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Smith, D. M., Khairi, M. R. & Johnston, C. C. Jr The loss of bone mineral with aging and its relationship to risk of fracture. J. Clin. Invest. 56, 311–318 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen, W. T. et al. Vertebral bone marrow perfusion evaluated with dynamic contrast-enhanced MR imaging: significance of aging and sex. Radiology 220, 213–218 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Shih, T. T. et al. Correlation of MR lumbar spine bone marrow perfusion with bone mineral density in female subjects. Radiology 233, 121–128 (2004).

    Article  PubMed  Google Scholar 

  141. Prisby, R. D. et al. Aging reduces skeletal blood flow, endothelium-dependent vasodilation, and NO bioavailability in rats. J. Bone Min. Res. 22, 1280–1288 (2007).

    Article  CAS  Google Scholar 

  142. Bloomfield, S. A., Hogan, H. A. & Delp, M. D. Decreases in bone blood flow and bone material properties in aging Fischer-344 rats. Clin. Orthop. Relat. Res. 396, 248–257 (2002).

    Article  Google Scholar 

  143. Stegen, S., van Gastel, N. & Carmeliet, G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone 70, 19–27 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Street, J. et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Natl Acad. Sci. USA 99, 9656–9661 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen, J. et al. Gli1+ cells couple with type H vessels and are required for type H vessel formation. Stem Cell Rep. 15, 110–124 (2020).

    Article  CAS  Google Scholar 

  146. Stefanowski, J. et al. Spatial distribution of macrophages during callus formation and maturation reveals close crosstalk between macrophages and newly forming vessels. Front. Immunol. 10, 2588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. McCarthy, I. The physiology of bone blood flow: a review. J. Bone Jt. Surg. Am. 88 (Suppl. 3), 4–9 (2006).

    Google Scholar 

  148. Tomlinson, R. E. & Silva, M. J. Skeletal blood flow in bone repair and maintenance. Bone Res. 1, 311–322 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. McKibbin, B. The biology of fracture healing in long bones. J. Bone Jt. Surg. Br. 60-B, 150–162 (1978).

    Article  CAS  Google Scholar 

  150. Reed, A. A., Joyner, C. J., Brownlow, H. C. & Simpson, A. H. Human atrophic fracture non-unions are not avascular. J. Orthop. Res. 20, 593–599 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Kenswil, K. J. G. et al. Characterization of endothelial cells associated with hematopoietic niche formation in humans identifies IL-33 as an anabolic factor. Cell Rep. 22, 666–678 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Wang, L. et al. Human type H vessels are a sensitive biomarker of bone mass. Cell Death Dis. 8, e2760 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhu, Y. et al. The association between CD31hiEmcnhi endothelial cells and bone mineral density in Chinese women. J. Bone Min. Metab. 37, 987–995 (2019).

    Article  Google Scholar 

  154. Alam, A. S. et al. Endothelin inhibits osteoclastic bone resorption by a direct effect on cell motility: implications for the vascular control of bone resorption. Endocrinology 130, 3617–3624 (1992).

    Article  CAS  PubMed  Google Scholar 

  155. Zaidi, M. et al. Role of the endothelial cell in osteoclast control: new perspectives. Bone 14, 97–102 (1993).

    Article  CAS  PubMed  Google Scholar 

  156. Sivaraj, K. K. et al. Regional specialization and fate specification of bone stromal cells in skeletal development. Cell Rep. 36, 109352 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Dvorak, H. F. Discovery of vascular permeability factor (VPF). Exp. Cell Res. 312, 522–526 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Shibuya, M. VEGF-VEGFR system as a target for suppressing inflammation and other diseases. Endocr. Metab. Immune Disord. Drug Targets 15, 135–144 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Semenza, G. L. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci. STKE 2007, cm8 (2007).

    Article  PubMed  Google Scholar 

  160. Hilton, M. J. et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat. Med. 14, 306–314 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Engin, F. et al. Dimorphic effects of Notch signaling in bone homeostasis. Nat. Med. 14, 299–305 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Blockus, H. & Chedotal, A. Slit-Robo signaling. Development 143, 3037–3044 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Adams, R. H. & Eichmann, A. Axon guidance molecules in vascular patterning. Cold Spring Harb. Perspect. Biol. 2, a001875 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Piccolo, S., Dupont, S. & Cordenonsi, M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol. Rev. 94, 1287–1312 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Dyer, L. A., Pi, X. & Patterson, C. The role of BMPs in endothelial cell function and dysfunction. Trends Endocrinol. Metab. 25, 472–480 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ramel, M. C. & Hill, C. S. Spatial regulation of BMP activity. FEBS Lett. 586, 1929–1941 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of R.H.A. is supported by the Max Planck Society, the European Research Council (AdG 786672, PROVEC) and the Leducq Foundation. The work of J.T. is supported by the Deutsche Forschungsgemeinschaft (Tu220/12, Tu220/14-1, Ci 216/2).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Jan Tuckermann or Ralf H. Adams.

Ethics declarations

Competing interests

R.H.A. declares that he is an investigator on patent EP 2 860 243 A1 (Reprogramming bone endothelial cells for bone angiogenesis and osteogenesis). J.T. declares no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks A. Naylor, R. Prisby and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Gorham–Stout disease

A rare osteolytic disease that is causally linked to the overgrowth and invasion of lymphatic vessels.

Epiphysis

Rounded portion at the end of a long bone that ossifies separately and is typically part of a joint.

Metaphysis

The section of the bone that mediates growth (length extension) and the connection between the diaphysis and epiphysis.

Diaphysis

The midsection (shaft) of long bone, which is enclosed by cortical bone and harbours bone marrow.

Ring of La Croix

A perichondral structure that surrounds the growth plate laterally.

Secondary spongiosa

The region where newly formed bony trabeculae are remodelled into mature trabeculae.

Primary spongiosa

The site near the growth plate where trabecular bone formation is initiated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuckermann, J., Adams, R.H. The endothelium–bone axis in development, homeostasis and bone and joint disease. Nat Rev Rheumatol 17, 608–620 (2021). https://doi.org/10.1038/s41584-021-00682-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00682-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing