Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modulation of IL-2Rα with daclizumab for treatment of multiple sclerosis

Abstract

Multiple sclerosis (MS) is a debilitating neurological disorder involving autoimmune destruction of myelin. Although the pathogenic mechanisms underlying MS are not fully understood, T cells are thought to have a key role in orchestrating the aberrant CNS-directed adaptive immune response in the early and relapsing–remitting phase of disease. New therapeutic interventions with improved efficacy over existing drugs and good tolerability are needed. A promising therapy under investigation is daclizumab—a humanized monoclonal antibody directed against the IL-2 receptor α chain (CD25). Clinical trials have shown that daclizumab strongly inhibits disease activity and slows disease progression in MS. Novel and intriguing mechanisms of action of daclizumab have been identified that might explain its clinical efficacy—namely, expansion and enhancement of the immune regulatory function of CD56bright natural killer cells, reduction of early T-cell activation through blockade of IL-2 cross-presentation by dendritic cells, and reduction of lymphoid tissue inducer cells—thereby enhancing endogenous mechanisms of immune tolerance. This Review discusses the efficacy and safety of daclizumab in patients with MS and provides a detailed insight into the multifunctional mechanisms of action of this drug.

Key Points

  • Daclizumab is an immune-modulating humanized IgG1 monoclonal antibody directed against the IL-2 receptor α chain (IL-2Rα, also known as CD25) that is under investigation for treatment of multiple sclerosis (MS)

  • Binding of daclizumab to IL-2Rα prevents assembly and signalling of the high-affinity IL-2R, which is involved in immune system activation

  • In clinical trials, daclizumab strongly inhibited disease activity and slowed disease progression in patients with MS, with a fairly good tolerability and safety profile

  • Novel mechanisms of action whereby daclizumab modulates the immune system in MS have been identified

  • These mechanisms involve expansion and stimulation of immune regulatory CD56bright natural killer cells, reduction of early T-cell activation, and reduction in the number of proinflammatory lymphoid tissue inducer cells

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imbalances in immune regulatory networks lead to autoimmunity underlying multiple sclerosis.
Figure 2: Component subunits of the intermediate-affinity IL-2 receptor and high-affinity IL-2 receptor.
Figure 3: Putative mechanisms of action of daclizumab.

Similar content being viewed by others

References

  1. Compston, A. & Coles, A. Multiple sclerosis. Lancet 359, 1221–1231 (2002).

    Article  PubMed  Google Scholar 

  2. Frohman, E. M., Racke, M. K. & Raine, C. S. Multiple sclerosis—the plaque and its pathogenesis. N. Engl. J. Med. 354, 942–955 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Goverman, J. M. Immune tolerance in multiple sclerosis. Immunol. Rev. 241, 228–240 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miller, E. Multiple sclerosis. Adv. Exp. Med. Biol. 724, 222–238 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Zozulya, A. L. & Wiendl, H. The role of regulatory T cells in multiple sclerosis. Nat. Clin. Pract. Neurol. 4, 384–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Cheng, G., Yu, A. & Malek, T. R. T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells. Immunol. Rev. 241, 63–76 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Malek, T. R. & Castro, I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 33, 153–165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matesanz, F. et al. Allelic expression and interleukin-2 polymorphisms in multiple sclerosis. J. Neuroimmunol. 119, 101–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Reboul, J. et al. Cytokines in genetic susceptibility to multiple sclerosis: a candidate gene approach. French Multiple Sclerosis Genetics Group. J. Neuroimmunol. 102, 107–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Malek, T. R. The biology of interleukin-2. Annu. Rev. Immunol. 26, 453–479 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Waldmann, T. A. Anti-Tac (daclizumab, Zenapax) in the treatment of leukemia, autoimmune diseases, and in the prevention of allograft rejection: a 25-year personal odyssey. J. Clin. Immunol. 27, 1–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Waldmann, T. A. The IL-2/IL-15 receptor systems: targets for immunotherapy. J. Clin. Immunol. 22, 51–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Nussenblatt, R. B. et al. Treatment of noninfectious intermediate and posterior uveitis with the humanized anti-Tac mAb: a phase I/II clinical trial. Proc. Natl Acad. Sci. USA 96, 7462–7466 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nussenblatt, R. B. et al. Humanized anti-interleukin-2 (IL-2) receptor alpha therapy: long-term results in uveitis patients and preliminary safety and activity data for establishing parameters for subcutaneous administration. J. Autoimmun. 21, 283–293 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Bielekova, B. et al. Effect of anti-CD25 antibody daclizumab in the inhibition of inflammation and stabilization of disease progression in multiple sclerosis. Arch. Neurol. 66, 483–489 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bielekova, B. et al. Intrathecal effects of daclizumab treatment of multiple sclerosis. Neurology 77, 1877–1886 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bielekova, B. et al. Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon β. Proc. Natl Acad. Sci. USA 101, 8705–8708 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rojas, M. A., Carlson, N. G., Miller, T. L. & Rose, J. W. Long-term daclizumab therapy in relapsing–remitting multiple sclerosis. Ther. Adv. Neurol. Disord. 2, 291–297 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rose, J. W. et al. Daclizumab phase II trial in relapsing and remitting multiple sclerosis: MRI and clinical results. Neurology 69, 785–789 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Rose, J. W., Watt, H. E., White, A. T. & Carlson, N. G. Treatment of multiple sclerosis with an anti-interleukin-2 receptor monoclonal antibody. Ann. Neurol. 56, 864–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Wynn, D. et al. Daclizumab in active relapsing multiple sclerosis (CHOICE study): a phase 2, randomised, double-blind, placebo-controlled, add-on trial with interferon beta. Lancet Neurol. 9, 381–390 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Gold, R. et al. Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECT): a randomised, double-blind placebo-cotrolled trial. Lancet http://dx.doi.org/10.1016/S0140-6736(12)62190-4.

  23. Giovannoni, G. et al. Primary results of the SELECTION trial of daclizumab HYP in relapsing multiple sclerosis. Mult. Scler. 18, 514 (2012).

    Article  Google Scholar 

  24. Oh, U. et al. Regulatory T cells are reduced during anti-CD25 antibody treatment of multiple sclerosis. Arch. Neurol. 66, 471–479 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bielekova, B. et al. Regulatory CD56bright natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis. Proc. Natl Acad. Sci. USA 103, 5941–5946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martin, J. F., Perry, J. S., Jakhete, N. R., Wang, X. & Bielekova, B. An IL-2 paradox: blocking CD25 on T cells induces IL-2-driven activation of CD56bright NK cells. J. Immunol. 185, 1311–1320 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Perry, J. S. et al. Inhibition of LTi cell development by CD25 blockade is associated with decreased intrathecal inflammation in multiple sclerosis. Sci. Transl. Med. 4, 145ra106 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Sheridan, J. P. et al. Intermediate-affinity interleukin-2 receptor expression predicts CD56bright natural killer cell expansion after daclizumab treatment in the CHOICE study of patients with multiple sclerosis. Mult. Scler. 17, 1441–1448 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Wuest, S. C. et al. A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat. Med. 17, 604–609 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martin, R. Humanized anti-CD25 antibody treatment with daclizumab in multiple sclerosis. Neurodegener. Dis. 5, 23–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Martin, R. Anti-CD25 (daclizumab) monoclonal antibody therapy in relapsing-remitting multiple sclerosis. Clin. Immunol. 142, 9–14 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Sadlack, B. et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75, 253–261 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Sadlack, B. et al. Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur. J. Immunol. 25, 3053–3059 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Suzuki, H. et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor β. Science 268, 1472–1476 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Malek, T. R., Yu, A., Vincek, V., Scibelli, P. & Kong, L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17, 167–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Bayer, A. L., Yu, A. & Malek, T. R. Function of the IL-2R for thymic and peripheral CD4+CD25+ Foxp3+ T regulatory cells. J. Immunol. 178, 4062–4071 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Hafler, D. A. et al. Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med. 357, 851–862 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Lowe, C. E. et al. Large-scale genetic fine mapping and genotype–phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat. Genet. 39, 1074–1082 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Maier, L. M. et al. IL2RA genetic heterogeneity in multiple sclerosis and type 1 diabetes susceptibility and soluble interleukin-2 receptor production. PLoS Genet. 5, e1000322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roifman, C. M. Human IL-2 receptor α chain deficiency. Pediatr. Res. 48, 6–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Sharfe, N., Dadi, H. K., Shahar, M. & Roifman, C. M. Human immune disorder arising from mutation of the α chain of the interleukin-2 receptor. Proc. Natl Acad. Sci. USA 94, 3168–3171 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Caudy, A. A., Reddy, S. T., Chatila, T., Atkinson, J. P. & Verbsky, J. W. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J. Allergy Clin. Immunol. 119, 482–487 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Williams, M. A., Tyznik, A. J. & Bevan, M. J. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441, 890–893 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stauber, D. J., Debler, E. W., Horton, P. A., Smith, K. A. & Wilson, I. A. Crystal structure of the IL-2 signaling complex: paradigm for a heterotrimeric cytokine receptor. Proc. Natl Acad. Sci. USA 103, 2788–2793 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hemar, A. et al. Endocytosis of interleukin 2 receptors in human T lymphocytes: distinct intracellular localization and fate of the receptor α, β, and γ chains. J. Cell Biol. 129, 55–64 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Yu, A. & Malek, T. R. The proteasome regulates receptor-mediated endocytosis of interleukin-2. J. Biol. Chem. 276, 381–385 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Gorman, M. P., Tillema, J. M., Ciliax, A. M., Guttmann, C. R. & Chitnis, T. Daclizumab use in patients with pediatric multiple sclerosis. Arch. Neurol. 69, 78–81 (2012).

    Article  PubMed  Google Scholar 

  49. Bielekova, B. Daclizumab therapy for multiple sclerosis. Neurotherapeutics 10, 55–67 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Giovannoni, G. et al. Increase in proportion of patients free from disease activity following 1 year treatment with daclizumab high-yield process in relapsing-remitting multiple sclerosis: results from the SELECT study. Mult. Scler. 18 (Suppl. 4), 419 (2012).

    Google Scholar 

  51. Carbone, T. et al. CD56highCD16CD62L NK cells accumulate in allergic contact dermatitis and contribute to the expression of allergic responses. J. Immunol. 184, 1102–1110 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. US National Library of Medicine. Efficacy and safety of daclizumab high yield process versus interferon β 1a in patients with relapsing–remitting multiple sclerosis (DECIDE). ClinicalTrials.gov [online], (2012).

  53. Farag, S. S. & Caligiuri, M. A. Human natural killer cell development and biology. Blood Rev. 20, 123–137 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Cooper, M. A., Fehniger, T. A. & Caligiuri, M. A. The biology of human natural killer-cell subsets. Trends Immunol. 22, 633–640 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Cooper, M. A. et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood 97, 3146–3151 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Fehniger, T. A. et al. CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 101, 3052–3057 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Airas, L. et al. Immunoregulatory factors in multiple sclerosis patients during and after pregnancy: relevance of natural killer cells. Clin. Exp. Immunol. 151, 235–243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Della Chiesa, M. et al. The natural killer cell-mediated killing of autologous dendritic cells is confined to a cell subset expressing CD94/NKG2A, but lacking inhibitory killer Ig-like receptors. Eur. J. Immunol. 33, 1657–1666 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Lünemann, A. et al. Human NK cells kill resting but not activated microglia via NKG2D- and NKp46-mediated recognition. J. Immunol. 181, 6170–6177 (2008).

    Article  PubMed  Google Scholar 

  60. Hao, J. et al. Central nervous system (CNS)-resident natural killer cells suppress Th17 responses and CNS autoimmune pathology. J. Exp. Med. 207, 1907–1921 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fletcher, J. M., Lalor, S. J., Sweeney, C. M., Tubridy, N. & Mills, K. H. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin. Exp. Immunol. 162, 1–11 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Steinman, L. Assessment of animal models for MS and demyelinating disease in the design of rational therapy. Neuron 24, 511–514 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Hao, J. et al. Interleukin-2/interleukin-2 antibody therapy induces target organ natural killer cells that inhibit central nervous system inflammation. Ann. Neurol. 69, 721–734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nat. Immunol. 9, 503–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Hamann, I. et al. Characterization of natural killer cells in paired CSF and blood samples during neuroinflammation. J. Neuroimmunol. 254, 165–169 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Elkins, J., Sheridan, J., Amaravadi, L., Riester, K. & O'Neill, G. CD56bright natural killer cell expansion predicts response to daclizumab HYP treatment in RRMS: results of the SELECT trial. Neurology 78 (Meeting Abstracts 1), S31.004 (2012).

    Article  Google Scholar 

  67. Jiang, W., Chai, N. R., Maric, D. & Bielekova, B. Unexpected role for granzyme K in CD56bright NK cell-mediated immunoregulation of multiple sclerosis. J. Immunol. 187, 781–790 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Bratke, K., Kuepper, M., Bade, B., Virchow, J. C. Jr & Luttmann, W. Differential expression of human granzymes A, B, and K in natural killer cells and during CD8+ T cell differentiation in peripheral blood. Eur. J. Immunol. 35, 2608–2616 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Zhao, T. et al. Granzyme K cleaves the nucleosome assembly protein SET to induce single-stranded DNA nicks of target cells. Cell Death Differ. 14, 489–499 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Bovenschen, N. et al. Granzyme K displays highly restricted substrate specificity that only partially overlaps with granzyme A. J. Biol. Chem. 284, 3504–3512 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. De Jager, P. L. et al. Cytometric profiling in multiple sclerosis uncovers patient population structure and a reduction of CD8low cells. Brain 131, 1701–1711 (2008).

    Article  PubMed  Google Scholar 

  72. Lünemann, A. et al. Impaired IFN-γ production and proliferation of NK cells in multiple sclerosis. Int. Immunol. 23, 139–148 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Benczur, M. et al. Dysfunction of natural killer cells in multiple sclerosis: a possible pathogenetic factor. Clin. Exp. Immunol. 39, 657–662 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cupedo, T. et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat. Immunol. 10, 66–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Lucchinetti, C. F. et al. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med. 365, 2188–2197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Spits, H. & Di Santo, J. P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol. 12, 21–27 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Sawa, S. et al. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science 330, 665–669 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Spits, H. & Cupedo, T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu. Rev. Immunol. 30, 647–675 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Freud, A. G. et al. A human CD34+ subset resides in lymph nodes and differentiates into CD56bright natural killer cells. Immunity 22, 295–304 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Rose, J. W. Anti-CD25 immunotherapy: regulating the regulators. Sci. Transl. Med. 4, 145fs25 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Schluns, K. S. Window of opportunity for daclizumab. Nat. Med. 17, 545–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Mnasria, K. et al. Anti-CD25 antibodies affect cytokine synthesis pattern of human dendritic cells and decrease their ability to prime allogeneic CD4+ T cells. J. Leukoc. Biol. 84, 460–467 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Rech, A. J. & Vonderheide, R. H. Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann. N. Y. Acad. Sci. 1174, 99–106 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Gold, R. et al. Regulatory T-cell numbers in patients with RRMS were not associated with clinical or MRI outcomes in the SELECT study. Mult. Scler. 18 (Suppl. 4), 195 (2012).

    Google Scholar 

  85. Mehta, D. et al. Reversal of the pharmacodynamic effects of daclizumab HYP following treatment washout: results from the SLECTION study. Neurology 80 (Meeting Abstracts 1), P05.188 (2013).

    Article  Google Scholar 

  86. Yu, A., Zhu, L., Altman, N. H. & Malek, T. R. A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity 30, 204–217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bayer, A. L., Lee, J. Y., de la Barrera, A., Surh, C. D. & Malek, T. R. A function for IL-7R for CD4+CD25+Foxp3+ T regulatory cells. J. Immunol. 181, 225–234 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Heninger, A. K. et al. IL-7 abrogates suppressive activity of human CD4+CD25+FOXP3+ regulatory T cells and allows expansion of alloreactive and autoreactive T cells. J. Immunol. 189, 5649–5658 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Sakaguchi, S., Miyara, M., Costantino, C. M. & Hafler, D. A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 10, 490–500 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Rech, A. J. et al. CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Sci. Transl. Med. 4, 134ra62 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Leonard, W. J. et al. A monoclonal antibody that appears to recognize the receptor for human T-cell growth factor; partial characterization of the receptor. Nature 300, 267–269 (1982).

    Article  CAS  PubMed  Google Scholar 

  92. Depper, J. M., Leonard, W. J., Robb, R. J., Waldmann, T. A. & Greene, W. C. Blockade of the interleukin-2 receptor by anti-Tac antibody: inhibition of human lymphocyte activation. J. Immunol. 131, 690–696 (1983).

    CAS  PubMed  Google Scholar 

  93. McDyer, J. F. et al. IL-2 receptor blockade inhibits late, but not early, IFN-γ and CD40 ligand expression in human T cells: disruption of both IL-12-dependent and -independent pathways of IFN-γ production. J. Immunol. 169, 2736–2746 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Tkaczuk, J. et al. Intracellular signaling consequences of anti-IL-2Rα blockade by daclizumab. Transplant. Proc. 33, 212–213 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Rani, A. et al. IL-2 regulates expression of C-MAF in human CD4 T cells. J. Immunol. 187, 3721–3729 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Sheridan, J. P. et al. Daclizumab treatment reduces activated T cells: results from the CHOICE MS study. Neurology 72, A35–A35 (2009).

    Google Scholar 

  97. Wiendl, H. & Kieseier, B. Multiple sclerosis: Reprogramming the immune repertoire with alemtuzumab in MS. Nat. Rev. Neurol. 9, 125–126 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Liu, J., Wang, L., Zhan, S.-Y. & Xia, Y. Daclizumab for relapsing remitting multiple sclerosis. Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD008127. http://dx.doi.org/10.1002/14651858.CD008127.pub3.

Download references

Acknowledgements

H. Wiendl is supported by the German Research Foundation (individual research grant “The role of NK cells in the immune regulation of MS” and centre grants CRC128 “Multiple sclerosis” and SFB1009 “Breaking barriers”), the German Competence Network of MS (KKNMS) founded by the German Federal Ministry of Education and Research (BMBF), the European Union (BEST-MS), the Interdisciplinary Clinical Research Centre Münster (IZKF) and the Interdisciplinary Centre for Clinical Research Münster (IMF). C. C. Gross is supported by the German Research Foundation (individual research grant “The role of NK cells in the immune regulation of MS”). We thank A. Fitton and P. Lane of UBC Scientific Solutions, a company that has received support from Biogen Idec, for assistance with searching of the literature, drafting of the figures, and editing of the manuscript for language prior to submission.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, provided a substantial contribution to discussions of the content, and contributed to writing and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Heinz Wiendl.

Ethics declarations

Competing interests

H. Wiendl has received honoraria for lecturing, and travel expenses for attending meetings from Bayer Health Care, Biogen Idec/Elan Corporation, Lilly, Lundbeck, Merck Serono, Novartis, Sanofi Aventis, and TEVA Neuroscience; has served or serves as a consultant for Biogen Idec, Merck Serono, Novartis Pharma, Sanofi-Aventis; and receives research support from Bayer Schering Pharma, Biogen Idec/Elan Corporation, Merck Serono, Novartis, Novo Nordisk, Sanofi-Aventis. C. C. Gross has received travel expenses for attending meetings from Novartis Pharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiendl, H., Gross, C. Modulation of IL-2Rα with daclizumab for treatment of multiple sclerosis. Nat Rev Neurol 9, 394–404 (2013). https://doi.org/10.1038/nrneurol.2013.95

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.95

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing