Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

Progress in inflammatory neuropathy —the legacy of Dr Jack Griffin

Abstract

The past quarter of a century has brought incredible advances in our understanding of inflammatory neuropathies, and the insights into Guillain–Barré syndrome (GBS) began in the 1990s with the seminal work of Dr Jack Griffin and his colleagues. In this essay, we provide a tribute to Jack, and review the recent progress in a field that he termed his personal favourite. In particular, we discuss the new developments in our understanding and diagnosis of inflammatory neuropathies, the recent emergence of the node of Ranvier and the paranode as sites of intensive investigation, and the mechanistic evidence that is providing a platform for therapeutic development studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Jack Griffin at Johns Hopkins in 2010.
Figure 2: The peripheral nerve nodal complex as an autoimmune target.

References

  1. McKhann, G. M. et al. Acute motor axonal neuropathy: a frequent cause of acute flaccid paralysis in China. Ann. Neurol. 33, 333–342 (1993).

    CAS  PubMed  Google Scholar 

  2. Hafer-Macko, C. E. et al. Immune attack on the Schwann cell surface in acute inflammatory demyelinating polyneuropathy. Ann. Neurol. 39, 625–635 (1996).

    CAS  PubMed  Google Scholar 

  3. Greenshields, K. N. et al. The neuropathic potential of anti-GM1 autoantibodies is regulated by the local glycolipid environment in mice. J. Clin. Invest. 119, 595–610 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. McGonigal, R. et al. Anti-GD1a antibodies activate complement and calpain to injure distal motor nodes of Ranvier in mice. Brain 133, 1944–1960 (2010).

    Google Scholar 

  5. Susuki, K. et al. Acute motor axonal neuropathy rabbit model: immune attack on nerve root axons. Ann. Neurol. 54, 383–388 (2003).

    PubMed  Google Scholar 

  6. Yuki, N. et al. Animal model of axonal Guillain–Barré syndrome induced by sensitization with GM1 ganglioside. Ann. Neurol. 49, 712–720 (2001).

    CAS  PubMed  Google Scholar 

  7. Griffin, J. W. et al. Pathology of the motor–sensory axonal Guillain–Barré syndrome. Ann. Neurol. 39, 17–28 (1996).

    CAS  PubMed  Google Scholar 

  8. Griffin, J. W. et al. Guillain–Barré syndrome in northern China. The spectrum of neuropathological changes in clinically defined cases. Brain 118, 577–595 (1995).

    PubMed  Google Scholar 

  9. Griffin, J. W. et al. Early nodal changes in the acute motor axonal neuropathy pattern of the Guillain–Barré syndrome. J. Neurocytol. 25, 33–51 (1996).

    CAS  PubMed  Google Scholar 

  10. Hafer-Macko, C. et al. Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann. Neurol. 40, 635–644 (1996).

    CAS  PubMed  Google Scholar 

  11. Ho, T. W. et al. Patterns of recovery in the Guillain–Barré syndromes. Neurology 48, 695–700 (1997).

    CAS  PubMed  Google Scholar 

  12. Ho, T. W. et al. Anti-GD1a antibody is associated with axonal but not demyelinating forms of Guillain–Barré syndrome. Ann. Neurol. 45, 168–173 (1999).

    CAS  PubMed  Google Scholar 

  13. Ilyas, A. A. et al. Serum antibodies to gangliosides in Guillain–Barré syndrome. Ann. Neurol. 23, 440–447 (1988).

    CAS  PubMed  Google Scholar 

  14. Ho, T. W. et al. Guillain–Barré syndrome in northern China. Relationship to Campylobacter jejuni infection and anti-glycolipid antibodies. Brain 118, 597–605 (1995).

    Google Scholar 

  15. Hadden, R. D. et al. Electrophysiological classification of Guillain–Barré syndrome: clinical associations and outcome. Plasma Exchange/Sandoglobulin Guillain–Barré Syndrome Trial Group. Ann. Neurol. 44, 780–788 (1998).

    CAS  PubMed  Google Scholar 

  16. Hughes, R. A. & Cornblath, D. R. Guillain–Barré syndrome. Lancet 366, 1653–1666, (2005).

    CAS  Google Scholar 

  17. Islam, Z. et al. Axonal variant of Guillain–Barré syndrome associated with Campylobacter infection in Bangladesh. Neurology 74, 581–587 (2010).

    CAS  PubMed  Google Scholar 

  18. Nachamkin, I. et al. Patterns of Guillain–Barré syndrome in children: results from a Mexican population. Neurology 69, 1665–1671 (2007).

    CAS  PubMed  Google Scholar 

  19. Feasby, T. E. et al. An acute axonal form of Guillain–Barré polyneuropathy. Brain 109, 1115–1126 (1986).

    PubMed  Google Scholar 

  20. Chowdhury, D. & Arora, A. Axonal Guillain–Barré syndrome: a critical review. Acta Neurol. Scand. 103, 267–277 (2001).

    CAS  PubMed  Google Scholar 

  21. Fisher, M. An unusual variant of acute idiopathic polyneuritis (syndrome of ophthalmoplegia, ataxia and areflexia). N. Engl. J. Med. 255, 57–65 (1956).

    CAS  PubMed  Google Scholar 

  22. Uncini, A., Manzoli, C., Notturno, F. & Capasso, M. Pitfalls in electrodiagnosis of Guillain–Barré syndrome subtypes. J. Neurol. Neurosurg. Psychiatry 81, 1157–1163 (2010).

    PubMed  Google Scholar 

  23. Rajabally, Y. A., Durand, M. C., Mitchell, J., Orlikowski, D. & Nicolas, G. Electrophysiological diagnosis of Guillain–Barré syndrome subtype: could a single study suffice? J. Neurol. Neurosurg. Psychiatry 86, 115–119 (2015).

    PubMed  Google Scholar 

  24. Uncini, A., Zappasodi, F. & Notturno, F. Electrodiagnosis of GBS subtypes by a single study: not yet the squaring of the circle. J. Neurol. Neurosurg. Psychiatry 86, 5–8 (2015).

    PubMed  Google Scholar 

  25. Hughes, R. A. & van Doorn, P. A. Corticosteroids for Guillain–Barré syndrome. Cochrane Database of Systematic Reviews, Issue 8. Art. No.: CD001446. http://dx.doi.org/10.1002/14651858.CD001446.pub4.

  26. Hughes, R. A., Swan, A. V. & van Doorn, P. A. Intravenous immunoglobulin for Guillain–Barré syndrome. Cochrane Database of Systematic Reviews, Issue 9. Art. No.: CD002063. http://dx.doi.org/10.1002/14651858.CD002063.pub6.

  27. Hughes, R. A., Pritchard, J. & Hadden, R. D. Pharmacological treatment other than corticosteroids, intravenous immunoglobulin and plasma exchange for Guillain–Barré syndrome. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD008630. http://dx.doi.org/10.1002/14651858.CD008630.pub3.

  28. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  29. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  30. Walgaard, C. et al. Early recognition of poor prognosis in Guillain–Barré syndrome. Neurology 76, 968–975 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Walgaard, C. et al. Prediction of respiratory insufficiency in Guillain–Barré syndrome. Ann. Neurol. 67, 781–787 (2010).

    PubMed  Google Scholar 

  32. IGOS GBS Prognosis Tool [online], (2015).

  33. Hughes, R. A., Newsom-Davis, J. M., Perkin, G. D. & Pierce, J. M. Controlled trial prednisolone in acute polyneuropathy. Lancet 2, 750–753 (1978).

    CAS  Google Scholar 

  34. Merkies, I. S. et al. Clinimetric evaluation of a new overall disability scale in immune mediated polyneuropathies. J. Neurol. Neurosurg. Psychiatry 72, 596–601 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lunn, M. P. & Van Den Bergh, P. Outcome measures in neuromuscular disease: is the world still flat? J. Peripher. Nerv. Syst. http://dx.doi.org/10.1111/jns.12119.

  36. van Nes, S. I., Faber, C. G. & Merkies, I. S. Outcome measures in immune-mediated neuropathies: the need to standardize their use and to understand the clinimetric essentials. J. Peripher. Nerv. Syst. 13, 136–147 (2008).

    PubMed  Google Scholar 

  37. van Nes, S. I. et al. Rasch-built Overall Disability Scale (R-ODS) for immune-mediated peripheral neuropathies. Neurology 76, 337–345 (2011).

    CAS  PubMed  Google Scholar 

  38. Draak, T. H. et al. Changing outcome in inflammatory neuropathies: Rasch-comparative responsiveness. Neurology 83, 2124–2132 (2014).

    CAS  PubMed  Google Scholar 

  39. Vanhoutte, E. K. et al. Impairment measures versus inflammatory-RODS in GBS and CIDP: a responsiveness comparison. J. Peripher. Nerv. Syst. http://dx.doi.org/10.1111/jns.12118.

  40. Salzer, J. L., Brophy, P. J. & Peles, E. Molecular domains of myelinated axons in the peripheral nervous system. Glia 56, 1532–1540 (2008).

    PubMed  Google Scholar 

  41. Willison, H. & Scherer, S. S. Ranvier revisited: novel nodal antigens stimulate interest in GBS pathogenesis. Neurology 83, 106–108 (2014).

    PubMed  Google Scholar 

  42. Mathey, E. K. et al. Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype. J. Neurol. Neurosurg. Psychiatry 86, 973–985 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. Chiba, A., Kusunoki, S., Shimizu, T. & Kanazawa, I. Serum IgG antibody to ganglioside GQ1b is a possible marker of Miller Fisher syndrome. Ann. Neurol. 31, 677–679 (1992).

    CAS  PubMed  Google Scholar 

  44. Fukami, Y. et al. Anti-GQ1b antibody syndrome: anti-ganglioside complex reactivity determines clinical spectrum. Eur. J. Neurol. http://dx.doi.org/10.1111/ene.12769.

  45. Lim, J. P., Devaux, J. & Yuki, N. Peripheral nerve proteins as potential autoantigens in acute and chronic inflammatory demyelinating polyneuropathies. Autoimmun. Rev. 13, 1070–1078 (2014).

    CAS  PubMed  Google Scholar 

  46. Labasque, M. et al. Specific contactin N-glycans are implicated in neurofascin binding and autoimmune targeting in peripheral neuropathies. J. Biol. Chem. 289, 7907–7918 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Querol, L. et al. Antibodies to contactin-1 in chronic inflammatory demyelinating polyneuropathy. Ann. Neurol. 73, 370–380 (2013).

    CAS  PubMed  Google Scholar 

  48. Miura, Y. et al. Contactin 1 IgG4 associates to chronic inflammatory demyelinating polyneuropathy with sensory ataxia. Brain 138, 1484–1491 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Huijbers, M. G. et al. The expanding field of IgG4-mediated neurological autoimmune disorders. Eur. J. Neurol. 22, 1151–1161 (2015).

    CAS  PubMed  Google Scholar 

  50. Willison, H. J. & Yuki, N. Peripheral neuropathies and anti-glycolipid antibodies. Brain 125, 2591–2625 (2002).

    PubMed  Google Scholar 

  51. Rossor, A. M., Evans, M. R. & Reilly, M. M. A practical approach to the genetic neuropathies. Pract. Neurol. 15, 187–198 (2015).

    PubMed  Google Scholar 

  52. Sawai, S. et al. Moesin is a possible target molecule for cytomegalovirus-related Guillain–Barré syndrome. Neurology 83, 113–117 (2014).

    CAS  PubMed  Google Scholar 

  53. Miyaji, K. et al. Are ERM (ezrin/radixin/moesin) proteins targets for autoantibodies in demyelinating neuropathies? Hum. Immunol. 75, 1089–1091 (2014).

    CAS  PubMed  Google Scholar 

  54. Sinmaz, N. et al. Autoantibodies in movement and psychiatric disorders: updated concepts in detection methods, pathogenicity, and CNS entry. Ann. N. Y. Acad. Sci. http://dx.doi.org/10.1111/nyas.12764.

  55. Kaida, K. & Kusunoki, S. Antibodies to gangliosides and ganglioside complexes in Guillain–Barré syndrome and Fisher syndrome: mini-review. J. Neuroimmunol. 223, 5–12 (2010).

    CAS  PubMed  Google Scholar 

  56. Willison, H. J. Ganglioside complexes: new autoantibody targets in Guillain–Barré syndromes. Nat. Clin. Pract. Neurol. 1, 2–3 (2005).

    CAS  PubMed  Google Scholar 

  57. Rinaldi, S. Complex antibodies provide a simple explanation for the plurality of clinical presentations in the Guillain Barré syndromes. Eur. J. Neurol. http://dx.doi.org/10.1111/ene.12793.

  58. Ogawa, G. et al. Antibodies to ganglioside complexes consisting of asialo-GM1 and GQ1b or GT1a in Fisher and Guillain–Barré syndromes. J. Neuroimmunol. 214, 125–127 (2009).

    CAS  PubMed  Google Scholar 

  59. Mauri, L. et al. Anti-GM1/GD1a complex antibodies in GBS sera specifically recognize the hybrid dimer GM1–GD1a. Glycobiology 22, 352–360 (2012).

    CAS  PubMed  Google Scholar 

  60. Rinaldi, S. et al. Antibodies to heteromeric glycolipid complexes in Guillain–Barré syndrome. PLoS ONE 8, e82337 (2013).

    PubMed  PubMed Central  Google Scholar 

  61. Usuki, S., O'Brien, D., Rivner, M. H. & Yu, R. K. A new approach to ELISA-based anti-glycolipid antibody evaluation of highly adhesive serum samples. J. Immunol. Methods 408, 52–63 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Stacey Sakowski Jacoby for her expert editorial assistance. E.L.F. is supported by the Program for Neurology Research and Discovery and the A. Alfred Taubman Medical Research Institute. H.J.W. is supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Eva L. Feldman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feldman, E., Hughes, R. & Willison, H. Progress in inflammatory neuropathy —the legacy of Dr Jack Griffin. Nat Rev Neurol 11, 646–650 (2015). https://doi.org/10.1038/nrneurol.2015.192

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing