Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The challenges and innovations for therapy in children with epilepsy

Subjects

Key Points

  • Information on the aetiology of epilepsies in children can be used to direct optimal treatments

  • Genetic analysis, neuroimaging and well-designed clinical trials can help to inform clinicians about therapeutic management of paediatric epilepsy

  • The availability of therapies and implementation of treatment guidelines differs between resource-poor and resource-rich countries

  • Comprehensive treatment options for paediatric patients with epilepsy should include antiepileptic drugs, a ketogenic diet, vagus nerve stimulation with surgery

  • Behavioural and cognitive problems frequently occur as comorbidities in children with epilepsy

Abstract

Major advances have been made in the diagnosis, evaluation and management of children with epilepsy over the past 15 years. There has been a marked increase in genetic diagnoses of a number of key childhood-onset epilepsy syndromes, such as Dravet syndrome, which has been linked to mutations in the SCN1A gene. The reorganization and reclassification of epilepsies, devised by the International League Against Epilepsy, has stimulated specialists to reassess their diagnostic practices; however, many studies have not addressed the global issues in treating children with epilepsy—specifically, the challenges of diagnosis through to optimal, and appropriate, therapeutic management. Also, Class I evidence-based data that are needed as a foundation for the development of treatment guidelines worldwide are lacking. Epilepsy is common, and the impact of this disease crosses age ranges and should be managed at all levels of care from community to quaternary care. In this Review, existing data and new therapeutic management approaches are discussed with the aim of highlighting the incidence of standard practices that may not be based on clinical evidence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the mechanism for closed-loop systems.

Similar content being viewed by others

References

  1. Cross, J. H., Kluger, G. & Lagae, L. Advancing the management of childhood epilepsies. Eur. J. Paediatr. Neurol. 17, 334–347 (2013).

    Article  PubMed  Google Scholar 

  2. Mlsna, L. M. & Koh, S. Maturation-dependent behavioral deficits and cell injury in developing animals during the subacute postictal period. Epilepsy Behav. 29, 190–197 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Paolicchi, J. M. The timing of pediatric epilepsy syndromes: what are the developmental triggers? Ann. N. Y. Acad. Sci. 1304, 45–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Sankar, R. & Rho, J. M. Do seizures affect the developing brain? Lessons from the laboratory. J. Child Neurol. 22, 21S–29S (2007).

    Article  PubMed  Google Scholar 

  5. Holmes, G. L. EEG abnormalities as a biomarker for cognitive comorbidities in pharmacoresistant epilepsy. Epilepsia 54 (Suppl. 2), 60–62 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aldenkamp, A. P. Effect of seizures and epileptiform discharges on cognitive function. Epilepsia 38 (Suppl. 1), S52–S55 (1997).

    Article  PubMed  Google Scholar 

  7. Binnie, C. D. Cognitive impairment during epileptiform discharges: is it ever justifiable to treat the EEG? Lancet Neurol. 2, 725–730 (2003).

    Article  PubMed  Google Scholar 

  8. Fournier, N. M., Botterill, J. J., Marks, W. N., Guskjolen, A. J. & Kalynchuk, L. E. Impaired recruitment of seizure-generated neurons into functional memory networks of the adult dentate gyrus following long-term amygdala kindling. Exp. Neurol. 244, 96–104 (2013).

    Article  PubMed  Google Scholar 

  9. Berg, A. T. et al. Longitudinal assessment of adaptive behavior in infants and young children with newly diagnosed epilepsy: influences of etiology, syndrome, and seizure control. Pediatrics 114, 645–650 (2004).

    Article  PubMed  Google Scholar 

  10. Berg, A. T., Zelko, F. A., Levy, S. R. & Testa, F. M. Age at onset of epilepsy, pharmacoresistance, and cognitive outcomes: a prospective cohort study. Neurology 79, 1384–1391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Camfield, P., Camfield, C. & Pohlmann-Eden, B. Transition from pediatric to adult epilepsy care: a difficult process marked by medical and social crisis. Epilepsy Curr. 12, 13–21 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Baraban, S. C., Dinday, M. T. & Hortopan, G. A. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat. Commun. 4, 2410 (2013).

    Article  PubMed  Google Scholar 

  13. Hortopan, G. A., Dinday, M. T. & Baraban, S. C. Zebrafish as a model for studying genetic aspects of epilepsy. Dis. Model. Mech. 3, 144–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Kayani, S. & Sirsi, D. The safety and tolerability of newer antiepileptic drugs in children and adolescents. J. Cent. Nerv. Syst. Dis. 4, 51–63 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Large, C. H. et al. The spectrum of anticonvulsant efficacy of retigabine (ezogabine) in animal models: implications for clinical use. Epilepsia 53, 425–436 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Neal, E. G. et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 7, 500–506 (2008).

    Article  PubMed  Google Scholar 

  17. Oguni, H. et al. Treatment and long-term prognosis of myoclonic-astatic epilepsy of early childhood. Neuropediatrics 33, 122–132 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Morrell, M. J. & RNS System in Epilepsy Study Group. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77, 1295–1304 (2011).

    Article  PubMed  Google Scholar 

  19. Caraballo, R. H. et al. Ketogenic diet in patients with Dravet syndrome. Epilepsia 46, 1539–1544 (2005).

    Article  PubMed  Google Scholar 

  20. Cook, M. J. et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 12, 563–571 (2013).

    Article  PubMed  Google Scholar 

  21. Fisher, R. et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51, 899–908 (2010).

    Article  PubMed  Google Scholar 

  22. Cross, J. H. et al. Proposed criteria for referral and evaluation of children for epilepsy surgery: recommendations of the subcommission for pediatric epilepsy surgery. Epilepsia 47, 952–959 (2006).

    Article  PubMed  Google Scholar 

  23. Loddenkemper, T. et al. Developmental outcome after epilepsy surgery in infancy. Pediatrics 119, 930–935 (2007).

    Article  PubMed  Google Scholar 

  24. Moosa, A. N. et al. Long-term functional outcomes and their predictors after hemispherectomy in 115 children. Epilepsia 54, 1771–1779 (2013).

    Article  PubMed  Google Scholar 

  25. Mbuba, C. K., Ngugi, A. K., Newton, C. R. & Carter, J. A. The epilepsy treatment gap in developing countries: a systematic review of the magnitude, causes, and intervention strategies. Epilepsia 49, 1491–1503 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Whorf, B. L. Language, Thought, and Reality: Selected Writings of Benjamin Lee Whorf (The Technology Press of Massachusetts Institute of Technology/John Wiley & Sons, Inc., 1956).

    Google Scholar 

  27. Merlis, J. K. Proposal for an international classification of the epilepsies. Epilepsia 11, 114–119 (1970).

    Article  CAS  PubMed  Google Scholar 

  28. Dreifuss, F. E. Classification of the epilepsies: influence on management. Rev. Neurol. (Paris) 143, 375–380 (1987).

    CAS  Google Scholar 

  29. [No authors listed] Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 30, 389–399 (1989).

  30. Berg, A. T. et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE commission on classification and terminology, 2005–2009. Epilepsia 51, 676–685 (2010).

    Article  PubMed  Google Scholar 

  31. Berg, A. T. & Cross, J. H. Towards a modern classification of the epilepsies? Lancet Neurol. 9, 459–461 (2010).

    Article  PubMed  Google Scholar 

  32. Blume, W. T. et al. Glossary of descriptive terminology for ictal semiology: report of the ILAE task force on classification and terminology. Epilepsia 42, 1212–1218 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Dura-Trave, T., Yoldi-Petri, M. E. & Gallinas-Victoriano, F. Incidence of epilepsies and epileptic syndromes among children in Navarre, Spain: 2002 through 2005. J. Child Neurol. 23, 878–882 (2008).

    Article  PubMed  Google Scholar 

  34. Eltze, C. M. et al. A population-based study of newly diagnosed epilepsy in infants. Epilepsia 54, 437–445 (2013).

    Article  PubMed  Google Scholar 

  35. Freitag, C. M., May, T. W., Pfafflin, M., Konig, S. & Rating, D. Incidence of epilepsies and epileptic syndromes in children and adolescents: a population-based prospective study in Germany. Epilepsia 42, 979–985 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Kurtz, Z., Tookey, P. & Ross, E. Epilepsy in young people: 23 year follow up of the British National Child Development Study. BMJ 316, 339–342 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Camfield, C. S., Camfield, P. R., Gordon, K., Wirrell, E. & Dooley, J. M. Incidence of epilepsy in childhood and adolescence: a population-based study in Nova Scotia from 1977 to 1985. Epilepsia 37, 19–23 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Doose, H. & Sitepu, B. Childhood epilepsy in a German city. Neuropediatrics 14, 220–224 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. Granieri, E. et al. A descriptive study of epilepsy in the district of Copparo, Italy, 1964–1978. Epilepsia 24, 502–514 (1983).

    Article  CAS  PubMed  Google Scholar 

  40. Olafsson, E. et al. Incidence of unprovoked seizures and epilepsy in Iceland and assessment of the epilepsy syndrome classification: a prospective study. Lancet Neurol. 4, 627–634 (2005).

    Article  PubMed  Google Scholar 

  41. Verity, C. M., Ross, E. M. & Golding, J. Epilepsy in the first 10 years of life: findings of the child health and education study. BMJ 305, 857–861 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Murray, C. J. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2012).

    Article  PubMed  Google Scholar 

  43. GBD Compare. Institute for Health Metrics and Evaluation [online], (2013).

  44. Diop, A. G., Hesdorffer, D. C., Logroscino, G. & Hauser, W. A. Epilepsy and mortality in Africa: a review of the literature. Epilepsia 46 (Suppl. 11), 33–35 (2005).

    PubMed  Google Scholar 

  45. Ding, D. et al. Premature mortality risk in people with convulsive epilepsy: long follow-up of a cohort in rural China. Epilepsia 54, 512–517 (2013).

    Article  PubMed  Google Scholar 

  46. Ngugi, A. K. et al. Prevalence of active convulsive epilepsy in sub-Saharan Africa and associated risk factors: cross-sectional and case-control studies. Lancet Neurol. 12, 253–263 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ngugi, A. K., Bottomley, C., Kleinschmidt, I., Sander, J. W. & Newton, C. R. Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia 51, 883–890 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mung'ala-Odera, V. et al. Prevalence, incidence and risk factors of epilepsy in older children in rural Kenya. Seizure 17, 396–404 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carter, J. A. et al. The reasons for the epilepsy treatment gap in Kilifi, Kenya: using formative research to identify interventions to improve adherence to antiepileptic drugs. Epilepsy Behav. 25, 614–621 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. The epilepsies: the diagnosis and management of the epilepsies in adults and children in primary and secondary care. NICE Clinical Guidelines [online], (2013).

  51. Visser, A. M. et al. Paroxysmal disorders in infancy and their risk factors in a population-based cohort: the Generation R. Study. Dev. Med. Child Neurol. 52, 1014–1020 (2010).

    Article  PubMed  Google Scholar 

  52. Uldall, P., Alving, J., Hansen, L. K., Kibaek, M. & Buchholt, J. The misdiagnosis of epilepsy in children admitted to a tertiary epilepsy centre with paroxysmal events. Arch. Dis. Child. 91, 219–221 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zeiler, S. R. & Kaplan, P. W. Our digital world: camera phones and the diagnosis of a seizure. Lancet 373, 2136 (2009).

    Article  PubMed  Google Scholar 

  54. Gaillard, W. D. et al. Guidelines for imaging infants and children with recent-onset epilepsy. Epilepsia 50, 2147–2153 (2009).

    Article  PubMed  Google Scholar 

  55. Craven, I. J. et al. 3.0 T MRI of 2000 consecutive patients with localisation-related epilepsy. Br. J. Radiol. 85, 1236–1242 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jayakar, P. et al. Diagnostic test utilization in evaluation for resective epilepsy surgery in children. Epilepsia http://dx.doi.org./10.1111/epi.12544.

  57. Barkovich, A. J., Guerrini, R., Kuzniecky, R. I., Jackson, G. D. & Dobyns, W. B. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135, 1348–1369 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bahi-Buisson, N. et al. Recurrent mutations in the CDKL5 gene: genotype–phenotype relationships. Am. J. Med. Genet. A 158A, 1612–1619 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Weckhuysen, S. et al. Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients. Neurology 81, 1697–1703 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carvill, G. L. et al. GRIN2A mutations cause epilepsy–aphasia spectrum disorders. Nat. Genet. 45, 1073–1076 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Harkin, L. A. et al. The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain 130, 843–852 (2007).

    Article  PubMed  Google Scholar 

  62. Brunklaus, A. et al. The clinical utility of an SCN1A genetic diagnosis in infantile-onset epilepsy. Dev. Med. Child Neurol. 55, 154–161 (2013).

    Article  PubMed  Google Scholar 

  63. Zuberi, S. M. et al. Genotype-phenotype associations in SCN1A-related epilepsies. Neurology 76, 594–600 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Klepper, J. GLUT1 deficiency syndrome in clinical practice. Epilepsy Res. 100, 272–277 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Lancaster, E. & Dalmau, J. Neuronal autoantigens—pathogenesis, associated disorders and antibody testing. Nat. Rev. Neurol. 8, 380–390 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hacohen, Y. et al. Paediatric autoimmune encephalopathies: clinical features, laboratory investigations and outcomes in patients with or without antibodies to known central nervous system autoantigens. J. Neurol. Neurosurg. Psychiatry 84, 748–755 (2013).

    Article  PubMed  Google Scholar 

  67. Irani, S. R., Bien, C. G. & Lang, B. Autoimmune epilepsies. Curr. Opin. Neurol. 24, 146–153 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Illingworth, M. A. et al. Elevated VGKC-complex antibodies in a boy with fever-induced refractory epileptic encephalopathy in school-age children (FIRES). Dev. Med. Child Neurol. 53, 1053–1057 (2011).

    Article  PubMed  Google Scholar 

  69. Nabbout, R. Autoimmune and inflammatory epilepsies. Epilepsia 53 (Suppl. 4), 58–62 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Takahashi, Y. et al. Autoantibodies and cell-mediated autoimmunity to NMDA-type GluRε2 in patients with Rasmussen's encephalitis and chronic progressive epilepsia partialis continua. Epilepsia 46 (Suppl. 5), 152–158 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Guidance for industry: E11 clinical investigation of medicinal products in the pediatric population. FDA [online], (2000).

  72. Chiron, C., Dulac, O. & Pons, G. Antiepileptic drug development in children: considerations for a revisited strategy. Drugs 68, 17–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Glauser, T. A. et al. Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. N. Engl. J. Med. 362, 790–799 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chiron, C. et al. Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. STICLO study group. Lancet 356, 1638–1642 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Wirrell, E. C. et al. Stiripentol in Dravet syndrome: results of a retrospective U. S. study. Epilepsia 54, 1595–1604 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Thanh, T. N. et al. Long-term efficacy and tolerance of stiripentaol in severe myoclonic epilepsy of infancy (Dravet's syndrome). Arch. Pediatr. 9, 1120–1127 (2002).

    Article  PubMed  Google Scholar 

  77. Glauser, T. et al. Rufinamide for generalized seizures associated with Lennox-Gastaut syndrome. Neurology 70, 1950–1958 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Kato, M. et al. Clinical spectrum of early onset epileptic encephalopathies caused by KCNQ2 mutation. Epilepsia 54, 1282–1287 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Miceli, F. et al. Genotype–phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of Kv7.2 potassium channel subunits. Proc. Natl Acad. Sci. USA 110, 4386–4391 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. European Medicines Agency [online].

  81. Ceulemans, B. et al. Successful use of fenfluramine as an add-on treatment for Dravet syndrome. Epilepsia 53, 1131–1139 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Lotte, J., Haberlandt, E., Neubauer, B., Staudt, M. & Kluger, G. J. Bromide in patients with SCN1A-mutations manifesting as Dravet syndrome. Neuropediatrics 43, 17–21 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Nicita, F. et al. Efficacy of verapamil as an adjunctive treatment in children with drug-resistant epilepsy: a pilot study. Seizure 23, 36–40 (2014).

    Article  PubMed  Google Scholar 

  84. Porter, B. E. & Jacobson, C. Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy. Epilepsy Behav. 29, 574–577 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Freitag, H. & Tuxhorn, I. Cognitive function in preschool children after epilepsy surgery: rationale for early intervention. Epilepsia 46, 561–567 (2005).

    Article  PubMed  Google Scholar 

  86. Jonas, R. et al. Surgery for symptomatic infant-onset epileptic encephalopathy with and without infantile spasms. Neurology 64, 746–750 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Varadkar, S. et al. Rasmussen's encephalitis: clinical features, pathobiology, and treatment advances. Lancet Neurol. 13, 195–205 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jansen, F. E., van Huffelen, A. C., Algra, A. & van Nieuwenhuizen, O. Epilepsy surgery in tuberous sclerosis: a systematic review. Epilepsia 48, 1477–1484 (2007).

    Article  PubMed  Google Scholar 

  89. Wilfong, A. A. & Curry, D. J. Hypothalamic hamartomas: optimal approach to clinical evaluation and diagnosis. Epilepsia 54 (Suppl. 9), 109–114 (2013).

    Article  PubMed  Google Scholar 

  90. Sharma, S., Sankhyan, N., Gulati, S. & Agarwala, A. Use of the modified Atkins diet for treatment of refractory childhood epilepsy: a randomized controlled trial. Epilepsia 54, 481–486 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Muzykewicz, D. A. et al. Efficacy, safety, and tolerability of the low glycemic index treatment in pediatric epilepsy. Epilepsia 50, 1118–1126 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Kang, H. C., Lee, Y. M., Kim, H. D., Lee, J. S. & Slama, A. Safe and effective use of the ketogenic diet in children with epilepsy and mitochondrial respiratory chain complex defects. Epilepsia 48, 82–88 (2007).

    CAS  PubMed  Google Scholar 

  93. Suls, A. et al. Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann. Neurol. 66, 415–419 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Mullen, S. A. et al. Glucose transporter 1 deficiency as a treatable cause of myoclonic astatic epilepsy. Arch. Neurol. 68, 1152–1155 (2011).

    Article  PubMed  Google Scholar 

  95. Chang, P. et al. Seizure control by ketogenic diet-associated medium chain fatty acids. Neuropharmacology 69, 105–114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Danial, N. N., Hartman, A. L., Stafstrom, C. E. & Thio, L. L. How does the ketogenic diet work? Four potential mechanisms. J. Child Neurol. 28, 1027–1033 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Masino, S. A. & Rho, J. M. Mechanisms of ketogenic diet action. In Jasper's Basic Mechanisms of the Epilepsies 4th edn (eds Noebels, J. L. et al.) (Bethesda National Center for Biotechnology Information, 2012).

    Google Scholar 

  98. Morris, G. L. 3rd et al. Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 81, 1453–1459 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Terra, V. C. et al. Vagus nerve stimulation in pediatric patients: is it really worthwhile? Epilepsy Behav. 31, 329–333 (2013).

    Article  PubMed  Google Scholar 

  100. Krook-Magnuson, E., Armstrong, C., Oijala, M. & Soltesz, I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun. 4, 1376 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Paz, J. T. et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat. Neurosci. 16, 64–70 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Austin, J. K. et al. Behavior problems in children at time of first recognized seizure and changes over the following 3 years. Epilepsy Behav. 21, 373–381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Caplan, R. et al. Psychopathology and pediatric complex partial seizures: seizure-related, cognitive, and linguistic variables. Epilepsia 45, 1273–1281 (2004).

    Article  PubMed  Google Scholar 

  104. Ott, D. et al. Behavioral disorders in pediatric epilepsy: unmet psychiatric need. Epilepsia 44, 591–597 (2003).

    Article  PubMed  Google Scholar 

  105. Oostrom, K. J. et al. Three to four years after diagnosis: cognition and behaviour in children with 'epilepsy only'. A prospective, controlled study. Brain 128, 1546–1555 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Oostrom, K. J. et al. Not only a matter of epilepsy: early problems of cognition and behavior in children with “epilepsy only”—a prospective, longitudinal, controlled study starting at diagnosis. Pediatrics 112, 1338–1344 (2003).

    Article  PubMed  Google Scholar 

  107. Jones, J. E., Siddarth, P., Gurbani, S., Shields, W. D. & Caplan, R. Cognition, academic achievement, language, and psychopathology in pediatric chronic epilepsy: short-term outcomes. Epilepsy Behav. 18, 211–217 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Fosi, T., Lax-Pericall, M. T., Scott, R. C., Neville, B. G. & Aylett, S. E. Methylphenidate treatment of attention deficit hyperactivity disorder in young people with learning disability and difficult-to-treat epilepsy: evidence of clinical benefit. Epilepsia 54, 2071–2081 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jensen, F. E. Epilepsy as a spectrum disorder: Implications from novel clinical and basic neuroscience. Epilepsia 52 (Suppl. 1), 1–6 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Berg, A. T. Epilepsy, cognition, and behavior: the clinical picture. Epilepsia 52 (Suppl. 1), 7–12 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Helmstaedter, C. et al. Disentangling the relationship between epilepsy and its behavioral comorbidities—the need for prospective studies in new-onset epilepsies. Epilepsy Behav. 31, 43–47 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Pineda, E. et al. Behavioral impairments in rats with chronic epilepsy suggest comorbidity between epilepsy and attention deficit/hyperactivity disorder. Epilepsy Behav. 31, 267–275 (2014).

    Article  PubMed  Google Scholar 

  113. Kaufmann, R., Goldberg-Stern, H. & Shuper, A. Attention-deficit disorders and epilepsy in childhood: incidence, causative relations and treatment possibilities. J. Child Neurol. 24, 727–733 (2009).

    Article  PubMed  Google Scholar 

  114. Kantzer, A. K., Fernell, E., Gillberg, C. & Miniscalco, C. Autism in community pre-schoolers: developmental profiles. Res. Dev. Disabil. 34, 2900–2908 (2013).

    Article  PubMed  Google Scholar 

  115. Tuchman, R. Autism and social cognition in epilepsy: implications for comprehensive epilepsy care. Curr. Opin. Neurol. 26, 214–218 (2013).

    Article  PubMed  Google Scholar 

  116. Matsuo, M., Maeda, T., Sasaki, K., Ishii, K. & Hamasaki, Y. Frequent association of autism spectrum disorder in patients with childhood onset epilepsy. Brain Dev. 32, 759–763 (2010).

    Article  PubMed  Google Scholar 

  117. Tuchman, R., Moshe, S. L. & Rapin, I. Convulsing toward the pathophysiology of autism. Brain Dev. 31, 95–103 (2009).

    Article  PubMed  Google Scholar 

  118. Kang, J. Q. & Barnes, G. A common susceptibility factor of both autism and epilepsy: functional deficiency of GABAA receptors. J. Autism Dev. Disord. 43, 68–79 (2013).

    Article  PubMed  Google Scholar 

  119. Pineda, E. et al. Maternal immune activation promotes hippocampal kindling epileptogenesis in mice. Ann. Neurol. 74, 11–19 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sahin, M. Targeted treatment trials for tuberous sclerosis and autism: no longer a dream. Curr. Opin. Neurobiol. 22, 895–901 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, D. Q., Li, F. H., Zhu, X. B. & Sun, R. P. Clinical observations on attention-deficit hyperactivity disorder (ADHD) in children with frontal lobe epilepsy. J. Child Neurol. 29, 54–57 (2014).

    Article  PubMed  Google Scholar 

  122. Wandschneider, B. et al. Risk-taking behavior in juvenile myoclonic epilepsy. Epilepsia 54, 2158–2165 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Jackson, D. C. et al. The neuropsychological and academic substrate of new/recent-onset epilepsies. J. Pediatr. 162, 1047–1053.e1 (2013).

    Article  PubMed  Google Scholar 

  124. Dunn, D. W., Austin, J. K. & Huster, G. A. Symptoms of depression in adolescents with epilepsy. J. Am. Acad. Child Adolesc. Psychiatry 38, 1132–1138 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Ettinger, A. B. et al. Symptoms of depression and anxiety in pediatric epilepsy patients. Epilepsia 39, 595–599 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Jones, J. E. et al. Psychiatric comorbidity in children with new onset epilepsy. Dev. Med. Child Neurol. 49, 493–497 (2007).

    Article  PubMed  Google Scholar 

  127. Williams, J. et al. Anxiety in children with epilepsy. Epilepsy Behav. 4, 729–732 (2003).

    Article  PubMed  Google Scholar 

  128. Mazarati, A., Shin, D., Auvin, S., Caplan, R. & Sankar, R. Kindling epileptogenesis in immature rats leads to persistent depressive behavior. Epilepsy Behav. 10, 377–383 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Guilfoyle, S. M., Wagner, J. L., Smith, G. & Modi, A. C. Early screening and identification of psychological comorbidities in pediatric epilepsy is necessary. Epilepsy Behav. 25, 495–500 (2012).

    Article  PubMed  Google Scholar 

  130. Hesdorffer, D. C. et al. Risk factors for febrile status epilepticus: a case–control study. J. Pediatr. 163, 1147–1151.e1 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Jones, J. E., Siddarth, P., Gurbani, S., Shields, W. D. & Caplan, R. Screening for suicidal ideation in children with epilepsy. Epilepsy Behav. 29, 521–526 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ben-Ari, Y., Khalilov, I., Kahle, K. T. & Cherubini, E. The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 18, 467–486 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Berg, A. T., Baca, C. B., Loddenkemper, T., Vickrey, B. G. & Dlugos, D. Priorities in pediatric epilepsy research: improving children's futures today. Neurology 81, 1166–1175 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hamiwka, L. D., Singh, N., Niosi, J. & Wirrell, E. C. Diagnostic inaccuracy in children referred with “first seizure”: role for a first seizure clinic. Epilepsia 48, 1062–1066 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Austin, J. K. et al. Behavior problems in children before first recognized seizures. Pediatrics 107, 115–122 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Fisher, R. S. et al. Seizure diaries for clinical research and practice: limitations and future prospects. Epilepsy Behav. 24, 304–310 (2012).

    Article  PubMed  Google Scholar 

  137. Iyer, A. & Appleton, R. Transitional services for adolescents with epilepsy in the U.K.: a survey. Seizure 22, 433–437 (2013).

    Article  PubMed  Google Scholar 

  138. Thomson, L., Fayed, N., Sedarous, F. & Ronen, G. M. Life quality and health in adolescents and emerging adults with epilepsy during the years of transition: a scoping review. Dev. Med. Child Neurol. http://dx.doi.org/10.1111/dmcn.12335.

  139. Camfield, P. R., Gibson, P. A. & Douglass, L. M. Strategies for transitioning to adult care for youth with Lennox–Gastaut syndrome and related disorders. Epilepsia 52 (Suppl. 5), 21–27 (2011).

    Article  PubMed  Google Scholar 

  140. Taniguchi, G., Watanabe, M., Watanabe, Y., Okazaki, M. & Murata, Y. Report of study on transitional medicine for epilepsy: questionnaire survey of pediatric neurologists. No To Hattatsu 44, 311–314 (2012).

    PubMed  Google Scholar 

  141. Appleton, R. E., Chadwick, D. & Sweeney, A. Managing the teenager with epilepsy: paediatric to adult care. Seizure 6, 27–30 (1997).

    Article  CAS  PubMed  Google Scholar 

  142. Jurasek, L., Ray, L. & Quigley, D. Development and implementation of an adolescent epilepsy transition clinic. J. Neurosci. Nurs. 42, 181–189 (2010).

    Article  PubMed  Google Scholar 

  143. Berg, A. T. et al. Mortality risks in new-onset childhood epilepsy. Pediatrics 132, 124–131 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Nolan, K., Camfield, C. S. & Camfield, P. R. Coping with a child with Dravet syndrome: insights from families. J. Child Neurol. 23, 690–694 (2008).

    Article  PubMed  Google Scholar 

  145. Glauser, T. et al. Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia 54, 551–563 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Vickrey, B. G., Hirtz, D., Waddy, S., Cheng, E. M. & Johnston, S. C. Comparative effectiveness and implementation research: directions for neurology. Ann. Neurol. 71, 732–742 (2012).

    Article  PubMed  Google Scholar 

  147. Leviton, A., Loddenkemper, T. & Pomeroy, S. L. Clinical practice guidelines and practice parameters for the child neurologist. J. Child Neurol. 28, 917–925 (2013).

    Article  PubMed  Google Scholar 

  148. Dunkley, C. & Cross, J. H. NICE guidelines and the epilepsies: how should practice change? Arch. Dis. Child. 91, 525–528 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Nolan, S. J., Tudur Smith, C., Pulman, J. & Marson, A. G. Phenobarbitone versus phenytoin monotherapy for partial onset seizures and generalised onset tonic–clonic seizures. Cochrane Database of Systematic Reviews, Issue 1, Art. No.: CD002217. http://dx.doi.org/10.1002/14651858.CD002217.pub2 (2013).

  150. Pal, D. K., Das, T., Chaudhury, G., Johnson, A. L. & Neville, B. G. Randomised controlled trial to assess acceptability of phenobarbital for childhood epilepsy in rural India. Lancet 351, 19–23 (1998).

    Article  CAS  PubMed  Google Scholar 

  151. Concato, J., Shah, N. & Horwitz, R. I. Randomized, controlled trials, observational studies, and the hierarchy of research designs. N. Engl. J. Med. 342, 1887–1892 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hirtz, D. et al. Practice parameter: evaluating a first nonfebrile seizure in children: report of the quality standards subcommittee of the American Academy of Neurology, The Child Neurology Society, and The American Epilepsy Society. Neurology 55, 616–623 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Gaillard, W. D. et al. Epilepsy imaging study guideline criteria: commentary on diagnostic testing study guidelines and practice parameters. Epilepsia 52, 1750–1756 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Kale, R. Global campaign against epilepsy: the treatment gap. Epilepsia 43 (Suppl. 6), 31–33 (2002).

    Article  PubMed  Google Scholar 

  155. Wilmshurst, J. M. et al. Child neurology services in Africa. J. Child Neurol. 26, 1555–1563 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  156. English, M. & Opiyo, N. Getting to grips with GRADE-perspective from a low-income setting. J. Clin. Epidemiol. 64, 708–710 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  157. van Harssel, J. J. et al. Clinical and genetic aspects of PCDH19-related epilepsy syndromes and the possible role of PCDH19 mutations in males with autism spectrum disorders. Neurogenetics 14, 23–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Bahi-Buisson, N. & Bienvenu, T. CDKL5-related disorders: from clinical description to molecular genetics. Mol. Syndromol. 2, 137–152 (2012).

    CAS  PubMed  Google Scholar 

  159. Kilstrup-Nielsen, C. et al. What we know and would like to know about CDKL5 and its involvement in epileptic encephalopathy. Neural Plast. 2012, 728267 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Barcia, G. et al. Early epileptic encephalopathies associated with STXBP1 mutations: could we better delineate the phenotype? Eur. J. Med. Genet. 57, 15–20 (2014).

    Article  PubMed  Google Scholar 

  161. Kato, M., Koyama, N., Ohta, M., Miura, K. & Hayasaka, K. Frameshift mutations of the ARX gene in familial Ohtahara syndrome. Epilepsia 51, 1679–1684 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Kato, M. et al. A longer polyalanine expansion mutation in the ARX gene causes early infantile epileptic encephalopathy with suppression-burst pattern (Ohtahara syndrome). Am. J. Hum. Genet. 81, 361–366 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Striano, P., Coppola, G., Zara, F. & Nabbout, R. Genetic heterogeneity in malignant migrating partial seizures of infancy. Ann. Neurol. http://dx.doi.org/10.1002/ana.24061.

  164. Barcia, G. et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat. Genet. 44, 1255–1259 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. McTague, A. et al. Migrating partial seizures of infancy: expansion of the electroclinical, radiological and pathological disease spectrum. Brain 136, 1578–1591 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Fretheim, A., Schunemann, H. J. & Oxman, A. D. Improving the use of research evidence in guideline development: 15. Disseminating and implementing guidelines. Health Res. Policy Syst. 4, 27 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Grimshaw, J., Eccles, M. & Tetroe, J. Implementing clinical guidelines: current evidence and future implications. J. Contin. Educ. Health Prof. 24 (Suppl. 1), S31–S37 (2004).

    Article  PubMed  Google Scholar 

  168. Katchanov, J. & Birbeck, G. L. Epilepsy care guidelines for low- and middle-income countries: from WHO mental health GAP to national programs. BMC Med. 10, 107 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.M.W., A.T.B. and J.H.C. researched the data for the manuscript, and reviewed and edited the manuscript before final submission. J.M.W., A.T.B., L.L. and J.H.C. provided substantial contributions to discussion and writing of the content. C.R.N. contributed to writing of the article.

Corresponding author

Correspondence to Jo M. Wilmshurst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilmshurst, J., Berg, A., Lagae, L. et al. The challenges and innovations for therapy in children with epilepsy. Nat Rev Neurol 10, 249–260 (2014). https://doi.org/10.1038/nrneurol.2014.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.58

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing