Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic generalized epilepsies in adults — challenging assumptions and dogmas

Subjects

Abstract

Genetic generalized epilepsy (GGE) syndromes start during childhood or adolescence, and four commonly persist into adulthood, making up 15–20% of all cases of epilepsy in adults. These four GGE syndromes are childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy and epilepsy with generalized tonic–clonic seizures alone. However, in ~20% of patients with GGE, characteristics of more than one syndrome are present. Novel insights into the genetic aetiology, comorbidities and prognosis of the GGE syndromes have emerged and challenge traditional concepts about these conditions. Evidence has shown that the mode of inheritance in GGE is mostly polygenic. Neuropsychological and imaging studies indicate similar abnormalities in unaffected relatives of patients with GGE, supporting the concept that underlying alterations in bilateral frontothalamocortical networks are genetically determined. Contrary to popular belief, first-line anti-seizure medication often fails to provide seizure freedom in combination with good tolerability. Nevertheless, long-term follow-up studies have shown that with advancing age, many patients can discontinue their anti-seizure medication without seizure relapses. Several outcome predictors have been identified, but prognosis across the syndromes is more homogeneous than previously assumed. Overall, overlap in pathophysiology, seizure types, treatment responses and outcomes support the idea that GGEs are not separate nosological entities but represent a neurobiological continuum.

Key points

  • Four genetic generalized epilepsy (GGE) syndromes affect ~0.1% of the adult population: childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy and epilepsy with generalized tonic–clonic seizures alone.

  • Pedigree studies have strongly suggested a genetic aetiology of GGE, but modes of inheritance are complex and the genetic mechanisms that underlie GGE are poorly understood.

  • Seizures and cognitive impairment in GGE arise from functional imbalances in frontothalamocortical brain networks.

  • Neuropsychiatric deficits and less favourable responsiveness to anti-seizure medication than previously assumed indicate that GGE is not necessarily benign.

  • Ethosuximide is the drug of choice for absence seizures, and valproic acid is effective against all generalized seizure types, but adverse effects, including teratogenicity, limit the usability of valproic acid.

  • Long-term outcomes seem to be homogeneous across the four GGE syndromes; seizure propensity decreases with advancing age so that successful discontinuation of anti-seizure medication becomes possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prevalence of active GGE syndromes across the lifespan.
Fig. 2: Ictal EEG findings in genetic generalized epilepsies.

Similar content being viewed by others

References

  1. Jallon, P. & Latour, P. Epidemiology of idiopathic generalized epilepsies. Epilepsia 46 (Suppl. 9), 10–14 (2005).

    Article  PubMed  Google Scholar 

  2. Gesche, J., Christensen, J., Hjalgrim, H., Rubboli, G. & Beier, C. P. Epidemiology and outcome of idiopathic generalized epilepsy in adults. Eur. J. Neurol. 27, 676–684 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. International League Against Epilepsy. Childhood absence epilepsy. EpilepsyDiagnosis.org https://www.epilepsydiagnosis.org/syndrome/cae-diffdiagnoses.html (2020).

  4. Vorderwülbecke, B. J. et al. Long-term outcome in adolescent-onset generalized genetic epilepsies. Epilepsia 58, 1244–1250 (2017). This study demonstrates that more than 40 years after the onset of epilepsy, 60% of patients with JAE, JME or EGTCS are in 5-year terminal seizure remission, with no differences between the syndromes.

    Article  PubMed  Google Scholar 

  5. Holtkamp, M., Janz, D., Kirschbaum, A., Kowski, A. B. & Vorderwülbecke, B. J. Absence epilepsy beyond adolescence: an outcome analysis after 45 years of follow-up. J. Neurol. Neurosurg. Psychiatry 89, 603–610 (2018).

    Article  PubMed  Google Scholar 

  6. Grosso, S. et al. Childhood absence epilepsy: evolution and prognostic factors. Epilepsia 46, 1796–1801 (2005).

    Article  PubMed  Google Scholar 

  7. Berg, A. T., Levy, S. R., Testa, F. M. & Blumenfeld, H. Long-term seizure remission in childhood absence epilepsy: might initial treatment matter? Epilepsia 55, 551–557 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Commission on Classification and Terminology of the ILAE. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 30, 389–399 (1989).

    Article  Google Scholar 

  9. Scheffer, I. E. et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58, 512–521 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Berg, A. T. et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia 51, 676–685 (2010).

    Article  PubMed  Google Scholar 

  11. Berkovic, S. F., Andermann, F., Andermann, E. & Gloor, P. Concepts of absence epilepsies: discrete syndromes or biological continuum? Neurology 37, 993–1000 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Reutens, D. C. & Berkovic, S. F. Idiopathic generalized epilepsy of adolescence: are the syndromes clinically distinct? Neurology 45, 1469–1476 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Panayiotopoulos, C. P. Syndromes of idiopathic generalized epilepsies not recognized by the International League Against Epilepsy. Epilepsia 46 (Suppl. 9), 57–66 (2005).

    Article  PubMed  Google Scholar 

  14. Panayiotopoulos, C. P., Tahan, R. & Obeid, T. Juvenile myoclonic epilepsy: factors of error involved in the diagnosis and treatment. Epilepsia 32, 672–676 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Lancman, M. E., Asconape, J. J. & Penry, J. K. Clinical and EEG asymmetries in juvenile myoclonic epilepsy. Epilepsia 35, 302–306 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Niaz, F. E., Abou-Khalil, B. & Fakhoury, T. The generalized tonic-clonic seizure in partial versus generalized epilepsy: semiologic differences. Epilepsia 40, 1664–1666 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Leutmezer, F., Lurger, S. & Baumgartner, C. Focal features in patients with idiopathic generalized epilepsy. Epilepsy Res. 50, 293–300 (2002).

    Article  PubMed  Google Scholar 

  18. Usui, N., Kotagal, P., Matsumoto, R., Kellinghaus, C. & Luders, H. O. Focal semiologic and electroencephalographic features in patients with juvenile myoclonic epilepsy. Epilepsia 46, 1668–1676 (2005).

    Article  PubMed  Google Scholar 

  19. Panayiotopoulos, C. P., Obeid, T. & Tahan, A. R. Juvenile myoclonic epilepsy: a 5-year prospective study. Epilepsia 35, 285–296 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Panayiotopoulos, C. P., Obeid, T. & Waheed, G. Differentiation of typical absence seizures in epileptic syndromes. A video EEG study of 224 seizures in 20 patients. Brain 112, 1039–1056 (1989).

    Article  PubMed  Google Scholar 

  21. Fisher, R. S. et al. Operational classification of seizure types by the International League Against Epilepsy: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58, 522–530 (2017).

    Article  PubMed  Google Scholar 

  22. Winawer, M. R. et al. Genetic effects on sleep/wake variation of seizures. Epilepsia 57, 557–565 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Janz, D. & Christian, W. Impulsiv petit-mal. Dtsch. Z. Nervenheilkd. 176, 346–386 (1957).

    Article  Google Scholar 

  24. Janz, D. Epilepsy with grand mal on awakening and sleep-waking cycle. Clin. Neurophysiol. 111 (Suppl. 2), 103–110 (2000).

    Article  Google Scholar 

  25. Wolf, P. & Goosses, R. Relation of photosensitivity to epileptic syndromes. J. Neurol. Neurosurg. Psychiatry 49, 1386–1391 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Appleton, R., Beirne, M. & Acomb, B. Photosensitivity in juvenile myoclonic epilepsy. Seizure 9, 108–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Ferlazzo, E., Zifkin, B. G., Andermann, E. & Andermann, F. Cortical triggers in generalized reflex seizures and epilepsies. Brain 128, 700–710 (2005).

    Article  PubMed  Google Scholar 

  28. Kasteleijn-Nolst Trenite, D. G. et al. Consensus on diagnosis and management of JME: from founder’s observations to current trends. Epilepsy Behav. 28 (Suppl. 1), 87–90 (2013).

    Article  Google Scholar 

  29. Rathore, C., Prakash, S. & Makwana, P. Prevalence of photoparoxysmal response in patients with epilepsy: effect of the underlying syndrome and treatment status. Seizure 82, 39–43 (2020).

    Article  PubMed  Google Scholar 

  30. Trinka, E. et al. Long-term prognosis for childhood and juvenile absence epilepsy. J. Neurol. 251, 1235–1241 (2004).

    Article  PubMed  Google Scholar 

  31. Loiseau, P. et al. in Epileptic Syndromes in Infancy, Childhood and Adolescence 3rd edn (eds Roger, J. et al.) 285–303 (Libbey, 2002).

  32. Danhofer, P., Brazdil, M., Oslejskova, H. & Kuba, R. Long-term seizure outcome in patients with juvenile absence epilepsy; a retrospective study in a tertiary referral center. Seizure 23, 443–447 (2014).

    Article  PubMed  Google Scholar 

  33. Lennox, W. G. The genetics of epilepsy. Am. J. Psychiatry 103, 457–462 (1947).

    Article  CAS  PubMed  Google Scholar 

  34. Lennox, W. G. The heredity of epilepsy as told by relatives and twins. J. Am. Med. Assoc. 146, 529–536 (1951).

    Article  CAS  PubMed  Google Scholar 

  35. Annegers, J. F., Hauser, W. A., Anderson, V. E. & Kurland, L. T. The risks of seizure disorders among relatives of patients with childhood onset epilepsy. Neurology 32, 174–179 (1982).

    Article  CAS  PubMed  Google Scholar 

  36. Marini, C. et al. Genetic architecture of idiopathic generalized epilepsy: clinical genetic analysis of 55 multiplex families. Epilepsia 45, 467–478 (2004).

    Article  PubMed  Google Scholar 

  37. Winawer, M. R. et al. Familial clustering of seizure types within the idiopathic generalized epilepsies. Neurology 65, 523–528 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Janz, D., Beck-Mannagetta, G. & Sander, T. Do idiopathic generalized epilepsies share a common susceptibility gene? Neurology 42, 48–55 (1992).

    CAS  PubMed  Google Scholar 

  39. Guerrini, R., Marini, C. & Barba, C. Generalized epilepsies. Handb. Clin. Neurol. 161, 3–15 (2019).

    Article  PubMed  Google Scholar 

  40. Baulac, S. et al. First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene. Nat. Genet. 28, 46–48 (2001). In this proof-of-principle study, one of the first single gene mutations was described as a potential monogenic cause of GGE.

    Article  CAS  PubMed  Google Scholar 

  41. Wallace, R. H. et al. Mutant GABA(A) receptor γ2-subunit in childhood absence epilepsy and febrile seizures. Nat. Genet. 28, 49–52 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Lachance-Touchette, P. et al. Novel α1 and γ2 GABAA receptor subunit mutations in families with idiopathic generalized epilepsy. Eur. J. Neurosci. 34, 237–249 (2011).

    Article  PubMed  Google Scholar 

  43. Maljevic, S. et al. A mutation in the GABA(A) receptor α(1)-subunit is associated with absence epilepsy. Ann. Neurol. 59, 983–987 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Scheffer, I. E. & Berkovic, S. F. Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain 120, 479–490 (1997).

    Article  PubMed  Google Scholar 

  45. Johannesen, K. et al. Phenotypic spectrum of GABRA1: from generalized epilepsies to severe epileptic encephalopathies. Neurology 87, 1140–1151 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Koch, H. & Weber, Y. G. The glucose transporter type 1 (Glut1) syndromes. Epilepsy Behav. 91, 90–93 (2019).

    Article  PubMed  Google Scholar 

  47. Dibbens, L. M. et al. Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. Hum. Mol. Genet. 18, 3626–3631 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mefford, H. C. et al. Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet. 6, e1000962 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. de Kovel, C. G. et al. Whole-genome linkage scan for epilepsy-related photosensitivity: a mega-analysis. Epilepsy Res. 89, 286–294 (2010).

    Article  PubMed  Google Scholar 

  50. Cox, D. M. & Butler, M. G. The 15q11.2 BP1-BP2 microdeletion syndrome: a review. Int. J. Mol. Sci. 16, 4068–4082 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mullen, S. A. et al. Copy number variants are frequent in genetic generalized epilepsy with intellectual disability. Neurology 81, 1507–1514 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. International League Against Epilepsy Consortium on Complex Epilepsies. Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies. Lancet Neurol. 13, 893–903 (2014).

    Article  Google Scholar 

  53. Leu, C. et al. Polygenic burden in focal and generalized epilepsies. Brain 142, 3473–3481 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mullen, S. A., Berkovic, S. F. & ILAE Genetics Commission Genetic generalized epilepsies. Epilepsia 59, 1148–1153 (2018).

    Article  PubMed  Google Scholar 

  55. Speed, D. et al. Describing the genetic architecture of epilepsy through heritability analysis. Brain 137, 2680–2689 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Epi25 Collaborative. Ultra-rare genetic variation in the epilepsies: a whole-exome sequencing study of 17,606 individuals. Am. J. Hum. Genet. 105, 267–282 (2019). In the largest cohort of patients with GGE studied to date, this study shows that the individual risk of GGE depends on combinations of multiple genetic risk factors.

    Article  Google Scholar 

  57. Moeller, F., LeVan, P. & Gotman, J. Independent component analysis (ICA) of generalized spike wave discharges in fMRI: comparison with general linear model-based EEG-fMRI. Hum. Brain Mapp. 32, 209–217 (2011).

    Article  PubMed  Google Scholar 

  58. Guo, J. N. et al. Impaired consciousness in patients with absence seizures investigated by functional MRI, EEG, and behavioural measures: a cross-sectional study. Lancet Neurol. 15, 1336–1345 (2016). This study shows that the extent of behavioural impairment during absence seizures is coupled to EEG and fMRI signal amplitudes, indicating that a ‘vulnerability state’ of widespread brain networks influences the severity of ictally impaired consciousness.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tangwiriyasakul, C. et al. Dynamic brain network states in human generalized spike-wave discharges. Brain 141, 2981–2994 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Raichle, M. E. The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, Z. et al. Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain 134, 2912–2928 (2011).

    Article  PubMed  Google Scholar 

  62. Parsons, N., Bowden, S. C., Vogrin, S. & D’Souza, W. J. Default mode network dysfunction in idiopathic generalised epilepsy. Epilepsy Res. 159, 106254 (2020).

    Article  PubMed  Google Scholar 

  63. Yang, S. et al. Temporal variability profiling of the default mode across epilepsy subtypes. Epilepsia 62, 61–73 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Elshahabi, A. et al. Magnetoencephalography reveals a widespread increase in network connectivity in idiopathic/genetic generalized epilepsy. PLoS ONE 10, e0138119 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Li Hegner, Y. et al. Increased functional MEG connectivity as a hallmark of MRI-negative focal and generalized epilepsy. Brain Topogr. 31, 863–874 (2018).

    Article  PubMed  Google Scholar 

  66. Routley, B., Shaw, A., Muthukumaraswamy, S. D., Singh, K. D. & Hamandi, K. Juvenile myoclonic epilepsy shows increased posterior theta, and reduced sensorimotor beta resting connectivity. Epilepsy Res. 163, 106324 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Chowdhury, F. A. et al. Revealing a brain network endophenotype in families with idiopathic generalised epilepsy. PLoS ONE 9, e110136 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Pegg, E. J., Taylor, J. R., Keller, S. S. & Mohanraj, R. Interictal structural and functional connectivity in idiopathic generalized epilepsy: a systematic review of graph theoretical studies. Epilepsy Behav. 106, 107013 (2020).

    Article  PubMed  Google Scholar 

  70. Bai, X. et al. Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J. Neurosci. 30, 5884–5893 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Killory, B. D. et al. Impaired attention and network connectivity in childhood absence epilepsy. Neuroimage 56, 2209–2217 (2011).

    Article  PubMed  Google Scholar 

  72. Vollmar, C. et al. Motor system hyperconnectivity in juvenile myoclonic epilepsy: a cognitive functional magnetic resonance imaging study. Brain 134, 1710–1719 (2011). In this study, the use of fMRI in JME shows that cognitive and motor cortical regions interact abnormally during a working memory task, which might explain cognitive impairment and cognitively triggered myoclonic seizures in JME.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ratcliffe, C. et al. Cognitive function in genetic generalized epilepsies: insights from neuropsychology and neuroimaging. Front. Neurol. 11, 144 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Vollmar, C. et al. Altered microstructural connectivity in juvenile myoclonic epilepsy: the missing link. Neurology 78, 1555–1559 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. O’Muircheartaigh, J. et al. Abnormal thalamocortical structural and functional connectivity in juvenile myoclonic epilepsy. Brain 135, 3635–3644 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wandschneider, B. et al. Motor co-activation in siblings of patients with juvenile myoclonic epilepsy: an imaging endophenotype? Brain 137, 2469–2479 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Caciagli, L. et al. Motor hyperactivation during cognitive tasks: an endophenotype of juvenile myoclonic epilepsy. Epilepsia 61, 1438–1452 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wang, Z. et al. Community-informed connectomics of the thalamocortical system in generalized epilepsy. Neurology 93, e1112 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Loughman, A., Bowden, S. C. & D’Souza, W. Cognitive functioning in idiopathic generalised epilepsies: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 43, 20–34 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Iqbal, N. et al. Neuropsychological profiles of patients with juvenile myoclonic epilepsy and their siblings: an extended study. Epilepsia 56, 1301–1308 (2015).

    Article  PubMed  Google Scholar 

  81. Abarrategui, B., Parejo-Carbonell, B., Garcia Garcia, M. E., Di Capua, D. & Garcia-Morales, I. The cognitive phenotype of idiopathic generalized epilepsy. Epilepsy Behav. 89, 99–104 (2018).

    Article  PubMed  Google Scholar 

  82. Caciagli, L. et al. Abnormal hippocampal structure and function in juvenile myoclonic epilepsy and unaffected siblings. Brain 142, 2670–2687 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Camfield, C. S. & Camfield, P. R. Juvenile myoclonic epilepsy 25 years after seizure onset: a population-based study. Neurology 73, 1041–1045 (2009).

    Article  PubMed  Google Scholar 

  84. Guida, M. et al. Social cognition in idiopathic generalized epilepsies and potential neuroanatomical correlates. Epilepsy Behav. 100, 106118 (2019).

    Article  PubMed  Google Scholar 

  85. Shakeshaft, A. et al. Trait impulsivity in juvenile myoclonic epilepsy. Ann. Clin. Transl. Neurol. 8, 138–152 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Caplan, R. et al. Language in pediatric epilepsy. Epilepsia 50, 2397–2407 (2009).

    Article  PubMed  Google Scholar 

  87. D’Agati, E., Cerminara, C., Casarelli, L., Pitzianti, M. & Curatolo, P. Attention and executive functions profile in childhood absence epilepsy. Brain Dev. 34, 812–817 (2012).

    Article  PubMed  Google Scholar 

  88. Masur, D. et al. Pretreatment cognitive deficits and treatment effects on attention in childhood absence epilepsy. Neurology 81, 1572–1580 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pavone, P. et al. Neuropsychological assessment in children with absence epilepsy. Neurology 56, 1047–1051 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Swartz, B. E., Halgren, E., Simpkins, F. & Syndulko, K. Primary memory in patients with frontal and primary generalized epilepsy. J. Epilepsy 7, 232–241 (1994).

    Article  Google Scholar 

  91. Wandschneider, B. et al. Prospective memory in patients with juvenile myoclonic epilepsy and their healthy siblings. Neurology 75, 2161–2167 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Guaranha, M. S. et al. Provocative and inhibitory effects of a video-EEG neuropsychologic protocol in juvenile myoclonic epilepsy. Epilepsia 50, 2446–2455 (2009).

    Article  PubMed  Google Scholar 

  93. Matsuoka, H. et al. Neuropsychological EEG activation in patients with epilepsy. Brain 123, 318–330 (2000).

    Article  PubMed  Google Scholar 

  94. Thomas, R. H. et al. A comprehensive neuropsychological description of cognition in drug-refractory juvenile myoclonic epilepsy. Epilepsy Behav. 36, 124–129 (2014).

    Article  PubMed  Google Scholar 

  95. Unterberger, I. et al. Risky decision making in juvenile myoclonic epilepsy. Front. Neurol. 9, 195 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wandschneider, B. et al. Risk-taking behavior in juvenile myoclonic epilepsy. Epilepsia 54, 2158–2165 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Giorgi, F. S. et al. Social cognition in juvenile myoclonic epilepsy. Epilepsy Res. 128, 61–67 (2016).

    Article  PubMed  Google Scholar 

  98. Degen, R., Degen, H. E. & Roth, C. Some genetic aspects of idiopathic and symptomatic absence seizures: waking and sleep EEGs in siblings. Epilepsia 31, 784–794 (1990).

    Article  CAS  PubMed  Google Scholar 

  99. Jayalakshmi, S. S., Mohandas, S., Sailaja, S. & Borgohain, R. Clinical and electroencephalographic study of first-degree relatives and probands with juvenile myoclonic epilepsy. Seizure 15, 177–183 (2006).

    Article  PubMed  Google Scholar 

  100. Tashkandi, M. et al. EEG of asymptomatic first-degree relatives of patients with juvenile myoclonic, childhood absence and rolandic epilepsy: a systematic review and meta-analysis. Epileptic Disord. 21, 30–41 (2019).

    PubMed  Google Scholar 

  101. Wandschneider, B. et al. Developmental MRI markers cosegregate juvenile patients with myoclonic epilepsy and their healthy siblings. Neurology 93, e1272–e1280 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. King, M. A. et al. Epileptology of the first-seizure presentation: a clinical, electroencephalographic, and magnetic resonance imaging study of 300 consecutive patients. Lancet 352, 1007–1011 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Baldin, E., Hauser, W. A., Buchhalter, J. R., Hesdorffer, D. C. & Ottman, R. Yield of epileptiform electroencephalogram abnormalities in incident unprovoked seizures: a population-based study. Epilepsia 55, 1389–1398 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Jamal Omidi, S., Hampson, J. P. & Lhatoo, S. D. Long-term home video EEG for recording clinical events. J. Clin. Neurophysiol. 38, 92–100 (2021).

    Article  PubMed  Google Scholar 

  105. Fisher, R. S. et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55, 475–482 (2014).

    Article  PubMed  Google Scholar 

  106. Bernasconi, A. et al. Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the International League Against Epilepsy Neuroimaging Task Force. Epilepsia 60, 1054–1068 (2019).

    Article  PubMed  Google Scholar 

  107. Glauser, T. A. et al. Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. N. Engl. J. Med. 362, 790–799 (2010). In this large, randomized controlled trial in CAE, ethosuximide and valproic acid were superior to lamotrigine with regard to lack of treatment failure, but attentional dysfunction was more common with valproic acid than with ethosuximide.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Brigo, F., Igwe, S. C. & Lattanzi, S. Ethosuximide, sodium valproate or lamotrigine for absence seizures in children and adolescents. Cochrane Database Syst. Rev. 1, CD003032 (2021).

    PubMed  Google Scholar 

  109. Marson, A. G. et al. The SANAD study of effectiveness of valproate, lamotrigine, or topiramate for generalised and unclassifiable epilepsy: an unblinded randomised controlled trial. Lancet 369, 1016–1026 (2007). In one of the most relevant treatment studies in generalized and unclassified epilepsy, overall time to treatment failure was longer for valproic acid than for lamotrigine or topiramate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Marson, A. et al. The SANAD II study of the effectiveness and cost-effectiveness of valproate versus levetiracetam for newly diagnosed generalised and unclassifiable epilepsy: an open-label, non-inferiority, multicentre, phase 4, randomised controlled trial. Lancet 397, 1375–1386 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gesche, J., Hjalgrim, H., Rubboli, G. & Beier, C. P. Patterns and prognostic markers for treatment response in generalized epilepsies. Neurology 95, e2519–e2528 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Tomson, T. et al. Comparative risk of major congenital malformations with eight different antiepileptic drugs: a prospective cohort study of the EURAP registry. Lancet Neurol. 17, 530–538 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Baker, G. A. et al. IQ at 6 years after in utero exposure to antiepileptic drugs: a controlled cohort study. Neurology 84, 382–390 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. European Medicines Agency. New measures to avoid valproate exposure in pregnancy endorsed (EMA, 2018).

  115. Gesche, J., Hjalgrim, H., Rubboli, G. & Beier, C. P. Risk factors of paradoxical reactions to anti-seizure medication in genetic generalized epilepsy. Epilepsy Res. 170, 106547 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Witt, J. A., Elger, C. E. & Helmstaedter, C. Impaired verbal fluency under topiramate–evidence for synergistic negative effects of epilepsy, topiramate, and polytherapy. Eur. J. Neurol. 20, 130–137 (2013).

    Article  PubMed  Google Scholar 

  117. Vossler, D. G. et al. Efficacy and safety of adjunctive lacosamide in the treatment of primary generalised tonic-clonic seizures: a double-blind, randomised, placebo-controlled trial. J. Neurol. Neurosurg. Psychiatry 91, 1067–1075 (2020).

    Article  PubMed  Google Scholar 

  118. Berkovic, S. F. et al. Placebo-controlled study of levetiracetam in idiopathic generalized epilepsy. Neurology 69, 1751–1760 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. French, J. A. et al. Perampanel for tonic-clonic seizures in idiopathic generalized epilepsy: a randomized trial. Neurology 85, 950–957 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Noachtar, S. et al. Levetiracetam for the treatment of idiopathic generalized epilepsy with myoclonic seizures. Neurology 70, 607–616 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Gelisse, P. et al. Worsening of seizures by oxcarbazepine in juvenile idiopathic generalized epilepsies. Epilepsia 45, 1282–1286 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Thomas, P., Valton, L. & Genton, P. Absence and myoclonic status epilepticus precipitated by antiepileptic drugs in idiopathic generalized epilepsy. Brain 129, 1281–1292 (2006).

    Article  PubMed  Google Scholar 

  123. Gesche, J., Khanevski, M., Solberg, C. & Beier, C. P. Resistance to valproic acid as predictor of treatment resistance in genetic generalized epilepsies. Epilepsia 58, e64–e69 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Mohanraj, R. & Brodie, M. J. Outcomes of newly diagnosed idiopathic generalized epilepsy syndromes in a non-pediatric setting. Acta Neurol. Scand. 115, 204–208 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Cerulli Irelli, E. et al. Persistent treatment resistance in genetic generalized epilepsy: a long-term outcome study in a tertiary epilepsy center. Epilepsia 61, 2452–2460 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Ashmawi, A., Hosny, H., Gadallah, M. & Beghi, E. Sleep convulsive seizures predict lack of remission in genetic generalized epilepsies: a retrospective study from a single epilepsy center in Egypt. Acta Neurol. Scand. 136, 528–535 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Martin, S. et al. Drug-resistant juvenile myoclonic epilepsy: misdiagnosis of progressive myoclonus epilepsy. Front. Neurol. 10, 946 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Zutt, R. et al. Unusual course of Lafora disease. Epilepsia Open 1, 136–139 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Suller Marti, A. et al. Vagus nerve stimulation in patients with therapy-resistant generalized epilepsy. Epilepsy Behav. 111, 107253 (2020).

    Article  PubMed  Google Scholar 

  130. Ng, M. & Devinsky, O. Vagus nerve stimulation for refractory idiopathic generalised epilepsy. Seizure 13, 176–178 (2004).

    Article  PubMed  Google Scholar 

  131. Verrotti, A., Tocco, A. M., Salladini, C., Latini, G. & Chiarelli, F. Human photosensitivity: from pathophysiology to treatment. Eur. J. Neurol. 12, 828–841 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Verrotti, A., Beccaria, F., Fiori, F., Montagnini, A. & Capovilla, G. Photosensitivity: epidemiology, genetics, clinical manifestations, assessment, and management. Epileptic Disord. 14, 349–362 (2012).

    Article  PubMed  Google Scholar 

  133. Hamerle, M., Ghaeni, L., Kowski, A., Weissinger, F. & Holtkamp, M. Alcohol use and alcohol-related seizures in patients with epilepsy. Front. Neurol. 9, 401 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Martinovic, Z. Adjunctive behavioural treatment in adolescents and young adults with juvenile myoclonic epilepsy. Seizure 10, 42–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Michaelis, R. et al. Psychological treatments for adults and children with epilepsy: evidence-based recommendations by the International League Against Epilepsy Psychology Task Force. Epilepsia 59, 1282–1302 (2018).

    Article  PubMed  Google Scholar 

  136. Beghi, E. et al. Prognostic patterns and predictors in epilepsy: a multicentre study (PRO-LONG). J. Neurol. Neurosurg. Psychiatry 90, 1276–1285 (2019).

    Article  PubMed  Google Scholar 

  137. Alsfouk, B. A., Alsfouk, A. A., Chen, Z., Kwan, P. & Brodie, M. J. Pharmacological outcomes in teenagers with newly diagnosed epilepsy: a 30-year cohort study. Epilepsia 60, 1083–1090 (2019).

    CAS  PubMed  Google Scholar 

  138. Sillanpää, M. et al. Childhood-onset epilepsy five decades later. a prospective population-based cohort study. Epilepsia 56, 1774–1783 (2015). This rare prospective, long-term study of childhood-onset epilepsies demonstrates that seizure remission rates are substantially higher in genetic epilepsies than in structural epilepsies.

    Article  PubMed  Google Scholar 

  139. Wirrell, E. C., Camfield, C. S., Camfield, P. R., Gordon, K. E. & Dooley, J. M. Long-term prognosis of typical childhood absence epilepsy: remission or progression to juvenile myoclonic epilepsy. Neurology 47, 912–918 (1996).

    Article  CAS  PubMed  Google Scholar 

  140. Martinez-Juarez, I. E. et al. Juvenile myoclonic epilepsy subsyndromes: family studies and long-term follow-up. Brain 129, 1269–1280 (2006).

    Article  PubMed  Google Scholar 

  141. Janz, D. Epilepsy with impulsive petit mal (juvenile myoclonic epilepsy). Acta Neurol. Scand. 72, 449–459 (1985).

    Article  CAS  PubMed  Google Scholar 

  142. Stevelink, R., Koeleman, B. P. C., Sander, J. W., Jansen, F. E. & Braun, K. P. J. Refractory juvenile myoclonic epilepsy: a meta-analysis of prevalence and risk factors. Eur. J. Neurol. 26, 856–864 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Baykan, B. et al. Myoclonic seizures subside in the fourth decade in juvenile myoclonic epilepsy. Neurology 70, 2123–2129 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Syvertsen, M. R., Thuve, S., Stordrange, B. S. & Brodtkorb, E. Clinical heterogeneity of juvenile myoclonic epilepsy: follow-up after an interval of more than 20 years. Seizure 23, 344–348 (2014).

    Article  PubMed  Google Scholar 

  145. Wolf, P. Remission of epilepsy as a function of time. Epilepsy Behav. 61, 46–50 (2016).

    Article  PubMed  Google Scholar 

  146. Lamberink, H. J. et al. Individualised prediction model of seizure recurrence and long-term outcomes after withdrawal of antiepileptic drugs in seizure-free patients: a systematic review and individual participant data meta-analysis. Lancet Neurol. 16, 523–531 (2017).

    Article  PubMed  Google Scholar 

  147. Vorderwülbecke, B. J., Kirschbaum, A., Merkle, H., Senf, P. & Holtkamp, M. Discontinuing antiepileptic drugs in long-standing idiopathic generalised epilepsy. J. Neurol. 266, 2554–2559 (2019).

    Article  PubMed  Google Scholar 

  148. Thurman, D. J. et al. The burden of premature mortality of epilepsy in high-income countries: a systematic review from the Mortality Task Force of the International League Against Epilepsy. Epilepsia 58, 17–26 (2017).

    Article  PubMed  Google Scholar 

  149. Verducci, C., Friedman, D., Donner, E. & Devinsky, O. Genetic generalized and focal epilepsy prevalence in the North American SUDEP Registry. Neurology 94, e1757–e1763 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Sveinsson, O., Andersson, T., Mattsson, P., Carlsson, S. & Tomson, T. Clinical risk factors in SUDEP: a nationwide population-based case-control study. Neurology 94, e419–e429 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Olsson, I. & Campenhausen, G. Social adjustment in young adults with absence epilepsies. Epilepsia 34, 846–851 (1993).

    Article  CAS  PubMed  Google Scholar 

  152. Wirrell, E. C. et al. Long-term psychosocial outcome in typical absence epilepsy. Sometimes a wolf in sheeps’ clothing. Arch. Pediatr. Adolesc. Med. 151, 152–158 (1997).

    Article  CAS  PubMed  Google Scholar 

  153. Mino, S. et al. Low rate of depressive symptomatology in patient with idiopathic generalized epilepsy. Psychiatry Clin. Neurosci. 49, S272–S274 (1995).

    Article  CAS  PubMed  Google Scholar 

  154. Perini, G. I. et al. Interictal mood and personality disorders in temporal lobe epilepsy and juvenile myoclonic epilepsy. J. Neurol. Neurosurg. Psychiatry 61, 601–605 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Loughman, A., Bendrups, N. A. & D’Souza, W. J. A systematic review of psychiatric and psychosocial comorbidities of genetic generalised epilepsies (GGE). Neuropsychol. Rev. 26, 364–375 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. de Araujo Filho, G. M. et al. Psychiatric disorders in juvenile myoclonic epilepsy: a controlled study of 100 patients. Epilepsy Behav. 10, 437–441 (2007).

    Article  PubMed  Google Scholar 

  157. Camfield, P. & Camfield, C. Idiopathic generalized epilepsy with generalized tonic-clonic seizures (IGE-GTC): a population-based cohort with >20 year follow up for medical and social outcome. Epilepsy Behav. 18, 61–63 (2010).

    Article  PubMed  Google Scholar 

  158. Gesche, J., Antonson, S., Dreier, J. W., Christensen, J. & Beier, C. P. Social outcome and psychiatric comorbidity of generalized epilepsies–a case-control study. Epilepsia 62, 1158–1169 (2021).

    Article  PubMed  Google Scholar 

  159. Baykan, B. & Wolf, P. Juvenile myoclonic epilepsy as a spectrum disorder: a focused review. Seizure 49, 36–41 (2017).

    Article  PubMed  Google Scholar 

  160. European Medicines Agency. Medicines. EMA https://www.ema.europa.eu/en/medicines/human (2021).

  161. US Food and Drug Administration. Drugs@FDA: FDA-approved drugs. FDA https://www.accessdata.fda.gov/scripts/cder/daf (2021).

  162. National Institute for Health and Care Excellence. Epilepsies: diagnosis and management. Clinical guideline CG137. NICE https://www.nice.org.uk/guidance/cg137 (2021).

  163. Epilepsy Action. Epilepsy medicines available in the UK. Epilepsy Action https://www.epilepsy.org.uk/info/treatment/uk-anti-epileptic-drugs-list (2021).

  164. Bresnahan, R., Martin-McGill, K. J., Williamson, J., Michael, B. D. & Marson, A. G. Clobazam add-on therapy for drug-resistant epilepsy. Cochrane Database Syst. Rev. 10, CD004154 (2019).

    PubMed  Google Scholar 

  165. Obeid, T. & Panayiotopoulos, C. P. Clonazepam in juvenile myoclonic epilepsy. Epilepsia 30, 603–606 (1989).

    Article  CAS  PubMed  Google Scholar 

  166. Browne, T. R. Clonazepam. N. Engl. J. Med. 299, 812–816 (1978).

    Article  CAS  PubMed  Google Scholar 

  167. Machado, R. A., Garcia, V. F., Astencio, A. G. & Cuartas, V. B. Efficacy and tolerability of lamotrigine in juvenile myoclonic epilepsy in adults: a prospective, unblinded randomized controlled trial. Seizure 22, 846–855 (2013).

    Article  PubMed  Google Scholar 

  168. Giri, V. P. et al. Valproic acid versus lamotrigine as first-line monotherapy in newly diagnosed idiopathic generalized tonic-clonic seizures in adults–a randomized controlled trial. J. Clin. Diagn. Res. 10, FC01–FC04 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Biton, V. et al. Double-blind, placebo-controlled study of lamotrigine in primary generalized tonic-clonic seizures. Neurology 65, 1737–1743 (2005).

    Article  CAS  PubMed  Google Scholar 

  170. Crespel, A. et al. Lamotrigine associated with exacerbation or de novo myoclonus in idiopathic generalized epilepsies. Neurology 65, 762–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Tabrizi, N., Zarvani, A., Rezaei, P., Cheraghmakani, H. & Alizadeh-Navaei, R. Levetiracetam in genetic generalized epilepsy: a prospective unblinded active-controlled trial. Epilepsy Res. 157, 106214 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Chen, B. et al. Psychiatric and behavioral side effects of antiepileptic drugs in adults with epilepsy. Epilepsy Behav. 76, 24–31 (2017).

    Article  PubMed  Google Scholar 

  173. Epilepsy Foundation. Phenobarbital. Epilepsy Foundation https://www.epilepsy.com/medications/phenobarbital/advanced (2020).

  174. Mattson, R. H. et al. Comparison of carbamazepine, phenobarbital, phenytoin, and primidone in partial and secondarily generalized tonic-clonic seizures. N. Engl. J. Med. 313, 145–151 (1985).

    Article  CAS  PubMed  Google Scholar 

  175. Bresnahan, R., Hounsome, J., Jette, N., Hutton, J. L. & Marson, A. G. Topiramate add-on therapy for drug-resistant focal epilepsy. Cochrane Database Syst. Rev. 10, CD001417 (2019).

    PubMed  Google Scholar 

  176. Levisohn, P. M. & Holland, K. D. Topiramate or valproate in patients with juvenile myoclonic epilepsy: a randomized open-label comparison. Epilepsy Behav. 10, 547–552 (2007).

    Article  PubMed  Google Scholar 

  177. Liu, J., Wang, L. N. & Wang, Y. P. Topiramate for juvenile myoclonic epilepsy. Cochrane Database Syst. Rev. 1, CD010008 (2019).

    PubMed  Google Scholar 

  178. Meador, K. J. et al. Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): a prospective observational study. Lancet Neurol. 12, 244–252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Cerulli Irelli, E. et al. Doing without valproate in women of childbearing potential with idiopathic generalized epilepsy: implications on seizure outcome. Epilepsia 61, 107–114 (2020).

    Article  PubMed  Google Scholar 

  180. Miro, J. et al. Low-dose sodium valproate in the treatment of idiopathic generalized epilepsies. Acta Neurol. Scand. 129, e20–e23 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. Veiby, G., Engelsen, B. A. & Gilhus, N. E. Early child development and exposure to antiepileptic drugs prenatally and through breastfeeding: a prospective cohort study on children of women with epilepsy. JAMA Neurol. 70, 1367–1374 (2013).

    Article  PubMed  Google Scholar 

  182. Meador, K. J. et al. Breastfeeding in children of women taking antiepileptic drugs: cognitive outcomes at age 6 years. JAMA Pediatr. 168, 729–736 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.J.V. and M.H. coordinated the overall process of manuscript production. All authors were involved in the design of the Review, performed literature searches and wrote chapters of the manuscript. B.J.V. and M.H. designed the figures. All authors reviewed and edited the manuscript before submission and gave final approval for submission.

Corresponding author

Correspondence to Martin Holtkamp.

Ethics declarations

Competing interests

B.J.V. received funding from the German Research Foundation (DFG 422589384). B.W. receives funding from the Medical Research Council (MR/T005335/1). Y.W. is supported by the German Research Foundation (DFG, FOR2715, WE4896/4-1) and the German Federal Ministry of Education and Research (BMBF, TreatIon, 01GM1907A). Within the past 3 years, she has received consultancy fees and support for travel expenses and for the organization of conferences from Desitin and UCB. M.H. holds the ‘Friedrich von Bodelschwingh Endowed Professorship for Clinical and Experimental Epileptology’ at the Department of Neurology, Charité – Universitätsmedizin Berlin funded by the v. Bodelschwingh Foundation. Within the past 3 years, he has received speaker’s honoraria and/or consultancy fees from Arvelle, Bial, Desitin, Eisai, GW Pharmaceuticals, UCB and Zogenix. Funding bodies were not involved in the writing of the report or the decision to submit the paper for publication.

Additional information

Peer review information

Nature Reviews Neurology thanks D. Andrade, O. Devinsky and U. Seneviratne for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

Appropriate references were identified through searches of PubMed, with a focus on articles published between 1 January 2000 and 15 April 2021. Search terms were combinations of the terms “generalized”, “genetic”, “idiopathic”, “epilepsy”, “absence”, “myoclonic”, “myoclonus”, “tonic–clonic”, “grand mal”, “seizure”, “receptor”, “variant”, “cognitive”, “psychiatric”, “outcome”, “antiepileptic” and “antiseizure”. In addition, we searched our own bibliographies and those of relevant articles. Original research articles and, where appropriate, review articles and websites were included. The final reference list is based on originality and relevance to the scope of the review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorderwülbecke, B.J., Wandschneider, B., Weber, Y. et al. Genetic generalized epilepsies in adults — challenging assumptions and dogmas. Nat Rev Neurol 18, 71–83 (2022). https://doi.org/10.1038/s41582-021-00583-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00583-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing