Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New strategies to optimize kidney recovery and preservation in transplantation

Abstract

Optimizing kidney preservation is a primary issue in transplantation, particularly in relation to new donor sources, such as expanded criteria donors (ECDs) and donation after cardiac death (DCD). Kidneys from these donors are highly sensitive to ischemia–reperfusion injuries—the emblematic lesions encountered during transplantation. Despite years of research, static cold storage, with solutions designed in the 1980s, remains the gold standard in kidney transplantation. This kind of preservation, however, is unable to fully protect an ECD or DCD kidney, highlighting the need for novel strategies to improve kidney preservation or promote kidney recovery. This Review provides an overview of the emerging strategies to prevent ischemia–reperfusion injuries in donor kidneys and describes strategies that are aimed at the donor, organ or recipient to improve graft outcome. These approaches include management of donors, preconditioning of the kidney, improvements in organ preservation solutions, postconditioning and regenerative therapies of the kidney graft following transplantation. In addition, machine perfusion provides an interesting opportunity to evaluate kidney graft quality before transplantation. Overall, a combination of therapeutic approaches seem to provide the best outcome, but preclinical studies using relevant models are needed before these approaches can be incorporated into clinical practice.

Key Points

  • Donor resuscitation affects kidney function before and after transplantation

  • Remote ischemic preconditioning to reduce ischemia–reperfusion injuries in donor kidneys needs to be evaluated in animal models of transplantation

  • Cold storage solutions based on polyethylene glycols or machine perfusion should be used to preserve grafts from all types of donors

  • Overexpression of proteins involved in downregulating inflammation, oxidative stress and apoptosis using ex vivo gene therapy improves graft survival or function in animal models of transplantation

  • Multivariate analysis of perfusates using proton NMR spectroscopy could reveal a factor that is predictive of graft outcome

  • Kidney transplantation outcome could be improved by remote ischemic postconditioning, pharmacological treatments or small interfering RNA therapy; stem cell therapy might promote kidney repair in the recipient

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Innovative treatments at the donor, graft preservation or recipient levels to improve kidney recovery.

Similar content being viewed by others

References

  1. Salahudeen, A. K. Cold ischemic injury of transplanted kidneys: new insights from experimental studies. Am. J. Physiol. Renal Physiol. 287, F181–F187 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Salahudeen, A. K. Cold ischemic injury of transplanted organs: some new strategies against an old problem. Am. J. Transplant. 4, 1 (2004).

    Article  PubMed  Google Scholar 

  3. Perico, N., Cattaneo, D., Sayegh, M. H. & Remuzzi, G. Delayed graft function in kidney transplantation. Lancet 364, 1814–1827 (2004).

    Article  PubMed  Google Scholar 

  4. Smith, M. & Vyas, H. Management of the potential organ donor. Paediatr. Child Health 21, 182–186 (2011).

    Article  Google Scholar 

  5. Westendorp, W. H., Leuvenink, H. G. & Ploeg, R. J. Brain death induced renal injury. Curr. Opin. Organ Transplant. 16, 151–156 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Gasser, M., Waaga, A. M., Laskowski, A. A. & Tilney, N. L. Organ transplantation from brain-dead donors: its impact on short- and long-term outcome revisited. Transplant. Rev. 15, 1–10 (2001).

    Article  Google Scholar 

  7. Pratschke, J. et al. Influence of donor brain death on chronic rejection of renal transplants in rats. J. Am. Soc. Nephrol. 12, 2474–2481 (2001).

    CAS  PubMed  Google Scholar 

  8. Giral, M. et al. Effect of brain-dead donor resuscitation on delayed graft function: results of a monocentric analysis. Transplantation 83, 1174–1181 (2007).

    Article  PubMed  Google Scholar 

  9. Ranasinghe, A. M. & Bonser, R. S. Endocrine changes in brain death and transplantation. Best Pract. Res. Clin. Endocrinol. Metab. 25, 799–812 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Bouma, H. R., Ploeg, R. J. & Schuurs, T. A. Signal transduction pathways involved in brain death-induced renal injury. Am. J. Transplant. 9, 989–997 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Blasco, V. et al. Comparison of the novel hydroxyethylstarch 130/0.4 and hydroxyethylstarch 200/0.6 in brain-dead donor resuscitation on renal function after transplantation. Br. J. Anaesth. 100, 504–508 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Blasco, V. et al. Impact of intensive care on renal function before graft harvest: results of a monocentric study. Crit. Care 11, R103 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Damman, J. et al. Targeting complement activation in brain-dead donors improves renal function after transplantation. Transpl. Immunol. 24, 233–237 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Pratschke, J. et al. Improvements in early behavior of rat kidney allografts after treatment of the brain-dead donor. Ann. Surg. 234, 732–740 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Preissler, G. et al. Targeted endothelial delivery of nanosized catalase immunoconjugates protects lung grafts donated after cardiac death. Transplantation 92, 380–387 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chatauret, N., Thuillier, R. & Hauet, T. Preservation strategies to reduce ischemic injury in kidney transplantation: pharmacological and genetic approaches. Curr. Opin. Organ Transplant. 16, 180–187 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Valero, R. et al. Blood flow and oxygen extraction during normothermic recirculation and total body cooling predict viability of liver from non-heart-beating pig donors. Transplant. Proc. 29, 3469–3470 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Valero, R. et al. Normothermic recirculation reduces primary graft dysfunction of kidneys obtained from non-heart-beating donors. Transpl. Int. 13, 303–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Magliocca, J. F. et al. Extracorporeal support for organ donation after cardiac death effectively expands the donor pool. J. Trauma 58, 1095–1101 (2005).

    Article  PubMed  Google Scholar 

  20. Imber, C. J. et al. Advantages of normothermic perfusion over cold storage in liver preservation. Transplantation 73, 701–709 (2002).

    Article  PubMed  Google Scholar 

  21. Hosgood, S. A. & Nicholson, M. L. Normothermic kidney preservation. Curr. Opin. Organ Transplant. 16, 169–173 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Huang, Y. et al. Can ischemic preconditioning alone really protect organs from ischemia reperfusion injury in transplantation. Transpl. Immunol. 20, 127–131 (2009).

    Article  PubMed  Google Scholar 

  23. Hausenloy, D. J. & Yellon, D. M. The therapeutic potential of ischemic conditioning: an update. Nat. Rev. Cardiol. 8, 619–629 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Zimmerman, R. F. et al. Ischemic preconditioning at a remote site prevents acute kidney injury in patients following cardiac surgery. Kidney Int. 80, 861–867 (2011).

    Article  PubMed  Google Scholar 

  25. Walsh, S. R. et al. Remote ischemic preconditioning for renal and cardiac protection during endovascular aneurysm repair: a randomized controlled trial. J. Endovasc. Ther. 16, 680–689 (2009).

    Article  PubMed  Google Scholar 

  26. Li, L. et al. Remote perconditioning reduces myocardial injury in adult valve replacement: a randomized controlled trial. J. Surg. Res. 164, e21–e26 (2010).

    Article  PubMed  Google Scholar 

  27. Rahman, I. A. et al. Remote ischemic preconditioning in human coronary artery bypass surgery: from promise to disappointment? Circulation 122 (Suppl.), S53–S59 (2010).

    Article  PubMed  Google Scholar 

  28. Choi, Y. S. et al. Effect of remote ischemic preconditioning on renal dysfunction after complex valvular heart surgery: a randomized controlled trial. J. Thorac. Cardiovasc. Surg. 142, 148–154 (2011).

    Article  PubMed  Google Scholar 

  29. Walsh, S. R. et al. Remote ischemic preconditioning for renal protection during elective open infrarenal abdominal aortic aneurysm repair: randomized controlled trial. Vasc. Endovasc. Surg. 44, 334–340 (2010).

    Article  Google Scholar 

  30. Wever, K. E. et al. Remote ischaemic preconditioning by brief hind limb ischaemia protects against renal ischaemia-reperfusion injury: the role of adenosine. Nephrol. Dial. Transplant. 26, 3108–3117 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Anaya-Prado, R. & Delgado-Vazquez, J. A. Scientific basis of organ preservation. Curr. Opin. Organ Transplant. 13, 129–134 (2008).

    Article  PubMed  Google Scholar 

  32. Jamieson, R. W. & Friend, P. J. Organ reperfusion and preservation. Front. Biosci. 13, 221–235 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Hicks, M., Hing, A., Gao, L., Ryan, J. & Macdonald, P. S. Organ preservation. Methods Mol. Biol. 333, 331–374 (2006).

    PubMed  Google Scholar 

  34. Maathuis, M. H., Leuvenink, H. G. & Ploeg, R. J. Perspectives in organ preservation. Transplantation 83, 1289–1298 (2007).

    Article  PubMed  Google Scholar 

  35. Hubert, T. et al. Influence of preservation solution on human islet isolation outcome. Transplantation 83, 270–276 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Giraud, S. et al. Contribution of large pig for renal ischemia-reperfusion and transplantation studies: the preclinical model. J. Biomed. Biotechnol. 2011, 532127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hauet, T. & Eugene, M. A new approach in organ preservation: potential role of new polymers. Kidney Int. 74, 998–1003 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Brunkhorst, F. M. & Oppert, M. Nephrotoxicity of hydroxyethyl starch solution. Br. J. Anaesth. 100, 856 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Bradley, A. J. & Scott, M. D. Immune complex binding by immunocamouflaged [poly(ethylene glycol)-grafted] erythrocytes. Am. J. Hematol. 82, 970–975 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Le, Y. & Scott, M. D. Immunocamouflage: the biophysical basis of immunoprotection by grafted methoxypoly(ethylene glycol) (mPEG). Acta Biomater. 6, 2631–2641 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Murad, K. L., Gosselin, E. J., Eaton, J. W. & Scott, M. D. Stealth cells: prevention of major histocompatibility complex class II-mediated T-cell activation by cell surface modification. Blood 94, 2135–2141 (1999).

    CAS  PubMed  Google Scholar 

  42. Eugene, M. Polyethyleneglycols and immunocamouflage of the cells tissues and organs for transplantation. Cell. Mol. Biol. (Noisy-le-grand) 50, 209–215 (2004).

    CAS  Google Scholar 

  43. Giraud, S. et al. A new preservation solution increases islet yield and reduces graft immunogenicity in pancreatic islet transplantation. Transplantation 83, 1397–1400 (2007).

    Article  PubMed  Google Scholar 

  44. Alijani, M. R. et al. Single-donor cold storage versus machine perfusion in cadaver kidney preservation. Transplantation 40, 659–661 (1985).

    Article  CAS  PubMed  Google Scholar 

  45. Balupuri, S. et al. The trouble with kidneys derived from the non heart-beating donor: a single center 10-year experience. Transplantation 69, 842–846 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Kwiatkowski, A. et al. The early and long term function and survival of kidney allografts stored before transplantation by hypothermic pulsatile perfusion. A prospective randomized study. Ann. Transplant. 14, 14–17 (2009).

    PubMed  Google Scholar 

  47. Kwiatkowski, A. et al. Machine perfusion preservation improves renal allograft survival. Am. J. Transplant. 7, 1942–1947 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Moustafellos, P. et al. The influence of pulsatile preservation in kidney transplantation from non-heart-beating donors. Transplant. Proc. 39, 1323–1325 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Reznik, O. N. et al. Machine perfusion as a tool to select kidneys recovered from uncontrolled donors after cardiac death. Transplant. Proc. 40, 1023–1026 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Wight, J. P., Chilcott, J. B., Holmes, M. W. & Brewer, N. Pulsatile machine perfusion vs. cold storage of kidneys for transplantation: a rapid and systematic review. Clin. Transplant. 17, 293–307 (2003).

    Article  PubMed  Google Scholar 

  51. Treckmann, J. et al. Function and quality of kidneys after cold storage, machine perfusion, or retrograde oxygen persufflation: results from a porcine autotransplantation model. Cryobiology 59, 19–23 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Hosgood, S. A., Yang, B., Bagul, A., Mohamed, I. H. & Nicholson, M. L. A comparison of hypothermic machine perfusion versus static cold storage in an experimental model of renal ischemia reperfusion injury. Transplantation 89, 830–837 (2010).

    Article  PubMed  Google Scholar 

  53. Irish, W. D. & Katz, E. Cold machine perfusion or static cold storage of kidneys: why the debate continues. Am. J. Transplant. 10, 1955–1956 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Reich, D. J. et al. ASTS recommended practice guidelines for controlled donation after cardiac death organ procurement and transplantation. Am. J. Transplant. 9, 2004–2011 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Watson, C. J. et al. Cold machine perfusion versus static cold storage of kidneys donated after cardiac death: a UK multicenter randomized controlled trial. Am. J. Transplant. 10, 1991–1999 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Jochmans, I. et al. Machine perfusion versus cold storage for the preservation of kidneys donated after cardiac death: a multicenter, randomized, controlled trial. Ann. Surg. 252, 756–764 (2010).

    Article  PubMed  Google Scholar 

  57. Treckmann, J. et al. Machine perfusion versus cold storage for preservation of kidneys from expanded criteria donors after brain death. Transpl. Int. 24, 548–554 (2011).

    Article  PubMed  Google Scholar 

  58. Moers, C. et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N. Engl. J. Med. 360, 7–19 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Kwiatkowski, A. et al. Influence of preservation method on histopathological lesions of kidney allografts. Ann. Transplant. 14, 10–13 (2009).

    PubMed  Google Scholar 

  60. Rauen, U. & de Groot, H. New insights into the cellular and molecular mechanisms of cold storage injury. J. Investig. Med. 52, 299–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Brasile, L. et al. Hypothermia—a limiting factor in using warm ischemically damaged kidneys. Am. J. Transplant. 1, 316–320 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Gage, F. et al. Room temperature pulsatile perfusion of renal allografts with Lifor compared with hypothermic machine pump solution. Transplant. Proc. 41, 3571–3574 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. van de Kerkhove, M. P. et al. Subnormothermic preservation maintains viability and function in a porcine hepatocyte culture model simulating bioreactor transport. Cell Transplant. 15, 161–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Maathuis, M. H. et al. Improved kidney graft function after preservation using a novel hypothermic machine perfusion device. Ann. Surg. 246, 982–988 (2007).

    Article  PubMed  Google Scholar 

  65. Regner, K. R. et al. Protective effect of Lifor solution in experimental renal ischemia-reperfusion injury. J. Surg. Res. 164, e291–e297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bagul, A. et al. Experimental renal preservation by normothermic resuscitation perfusion with autologous blood. Br. J. Surg. 95, 111–118 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Hosgood, S. A. & Nicholson, M. L. First in man renal transplantation after ex vivo normothermic perfusion. Transplantation 92, 735–738 (2011).

    Article  PubMed  Google Scholar 

  68. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  69. Giraud, S. et al. Direct thrombin inhibitor prevents delayed graft function in a porcine model of renal transplantation. Transplantation 87, 1636–1644 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Favreau, F. et al. Anti-thrombin therapy during warm ischemia and cold preservation prevents chronic kidney graft fibrosis in a DCD model. Am. J. Transplant. 10, 30–39 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Thuillier, R. et al. Thrombin inhibition during kidney ischemia-reperfusion reduces chronic graft inflammation and tubular atrophy. Transplantation 90, 612–621 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Cheadle, C. et al. Effects of anti-adhesive therapy on kidney biomarkers of ischemia reperfusion injury in human deceased donor kidney allografts. Clin. Transplant. 25, 766–775 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Jayle, C. et al. Protective role of selectin ligand inhibition in a large animal model of kidney ischemia–reperfusion injury. Kidney Int. 69, 1749–1755 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Rong, S. et al. The TIM-1–TIM-4 pathway enhances renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 22, 484–495 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lewis, A. G., Kohl, G., Ma, Q., Devarajan, P. & Köhl, J. Pharmacological targeting of C5a receptors during organ preservation improves kidney graft survival. Clin. Exp. Immunol. 153, 117–126 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Davis, A. E. 3rd, Lu, F. & Mejia, P. C1 inhibitor, a multi-functional serine protease inhibitor. Thromb. Haemost. 104, 886–893 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Castellano, G. et al. Therapeutic targeting of classical and lectin pathways of complement protects from ischemia–reperfusion-induced renal damage. Am. J. Pathol. 176, 1648–1659 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fantini, E., Demaison, L., Sentex, E., Grynberg, A. & Athias, P. Some biochemical aspects of the protective effect of trimetazidine on rat cardiomyocytes during hypoxia and reoxygenation. J. Mol. Cell. Cardiol. 26, 949–958 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Ancerewicz, J. et al. Structure-property relationships of trimetazidine derivatives and model compounds as potential antioxidants. Free Radic. Biol. Med. 25, 113–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Reymond, F. et al. The pH-partition profile of the anti-ischemic drug trimetazidine may explain its reduction of intracellular acidosis. Pharm. Res. 16, 616–624 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Goujon, J. M., Vandewalle, A., Baumert, H., Carretier, M. & Hauet, T. Influence of cold-storage conditions on renal function of autotransplanted large pig kidneys. Kidney Int. 58, 838–850 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Hauet, T. et al. Trimetazidine reduces renal dysfunction by limiting the cold ischemia/reperfusion injury in autotransplanted pig kidneys. J. Am. Soc. Nephrol. 11, 138–148 (2000).

    CAS  PubMed  Google Scholar 

  83. Martins, G. F. et al. Trimetazidine on ischemic injury and reperfusion in coronary artery bypass grafting. Arq. Bras. Cardiol. 97, 209–216 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Matsumoto, S. & Kuroda, Y. Perfluorocarbon for organ preservation before transplantation. Transplantation 74, 1804–1809 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Kuroda, Y. et al. A new, simple method for cold storage of the pancreas using perfluorochemical. Transplantation 46, 457–460 (1988).

    Article  CAS  PubMed  Google Scholar 

  86. Fujino, Y. et al. Preservation of canine pancreas for 96 hours by a modified two-layer (UW solution/perfluorochemical) cold storage method. Transplantation 51, 1133–1135 (1991).

    Article  CAS  PubMed  Google Scholar 

  87. Yoshikawa, T. et al. Detailed analysis of mucosal restoration of the small intestine after the cavitary two-layer cold storage method. Am. J. Transplant. 5, 2135–2142 (2005).

    Article  PubMed  Google Scholar 

  88. Hosgood, S. A., Mohamed, I. H. & Nicholson, M. L. The two layer method does not improve the preservation of porcine kidneys. Med. Sci. Monit. 17, BR27–BR33 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hosgood, S. A., Nicholson, H. F. & Nicholson, M. L. Oxygenated kidney preservation techniques. Transplantation 93, 455–459 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Kakehata, J. et al. Therapeutic potentials of an artificial oxygen-carrier, liposome-encapsulated hemoglobin, for ischemia/reperfusion-induced cerebral dysfunction in rats. J. Pharmacol. Sci. 114, 189–197 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Spahn, D. R. & Kocian, R. Artificial O2 carriers: status in 2005. Curr. Pharm. Des. 11, 4099–4114 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Thuillier, R. et al. Supplementation with a new therapeutic oxygen carrier reduces chronic fibrosis and organ dysfunction in kidney static preservation. Am. J. Transplant. 11, 1845–1860 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. van der Wouden, E. A., Sandovici, M., Henning, R. H., de Zeeuw, D. & Deelman, L. E. Approaches and methods in gene therapy for kidney disease. J. Pharmacol. Toxicol. Methods 50, 13–24 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Castanotto, D. & Rossi, J. J. The promises and pitfalls of RNA-interference-based therapeutics. Nature 457, 426–433 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Stokman, G., Qin, Y., Racz, Z., Hamar, P. & Price, L. S. Application of siRNA in targeting protein expression in kidney disease. Adv. Drug Deliv. Rev. 62, 1378–1389 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Kahan, B. D. et al. Phase I and phase II safety and efficacy trial of intercellular adhesion molecule-1 antisense oligodeoxynucleotide (ISIS 2302) for the prevention of acute allograft rejection. Transplantation 78, 858–863 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Ferrari, N. et al. Characterization of antisense oligonucleotides comprising 2'-deoxy-2'-fluoro-β -D-arabinonucleic acid (FANA): specificity, potency, and duration of activity. Ann. NY Acad. Sci. 1082, 91–102 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Zheng, X. et al. Novel small interfering RNA-containing solution protecting donor organs in heart transplantation. Circulation 120, 1099–1107 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Yang, B., Hosgood, S. A. & Nicholson, M. L. Naked small interfering RNA of caspase-3 in preservation solution and autologous blood perfusate protects isolated ischemic porcine kidneys. Transplantation 91, 501–507 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Tsoulfas, G. et al. Hydrodynamic plasmid DNA gene therapy model in liver transplantation. J. Surg. Res. 135, 242–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Kosieradzki, M. et al. Early function of kidneys stored by continuous hypothermic pulsatile perfusion can be predicted using a new “viability index”. Transplant. Proc. 34, 541–543 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Moers, C. et al. The value of machine perfusion perfusate biomarkers for predicting kidney transplant outcome. Transplantation 90, 966–973 (2010).

    Article  PubMed  Google Scholar 

  103. Liu, Q. et al. Discriminate liver warm ischemic injury during hypothermic machine perfusion by proton magnetic resonance spectroscopy: a study in a porcine model. Transplant. Proc. 41, 3383–3386 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Bon, D. et al. NMR analysis of solution during machine perfusion: predicting graft outcome? Abstracts of the 15th Congress of the European Society for Organ Transplantation & 22nd Annual Conference of the British Society for Histocompatibility & Immunogenetics. Glasgow, UK. Transpl. Int. 24 (Suppl. 2), O-033 (2011).

    Google Scholar 

  105. Garfield, S. S. & Evans, R. W. Machine perfusion cost-effectiveness versus cold storage has been demonstrated; limiting use to marginal donor kidneys unjustified. Transpl. Int. 23, e67–e68 (2010).

    Article  PubMed  Google Scholar 

  106. Wszola, M. et al. Long term medical and economical benefit of machine perfusion (MP) kidney storage in comparison to cold storage (CS). Ann. Transplant. 14, 24–29 (2009).

    PubMed  Google Scholar 

  107. Szwarc, I. et al. Ischemic postconditioning prevents ischemic acute renal failure. Transplant. Proc. 39, 2554–2556 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Chen, H. et al. Ischemic postconditioning inhibits apoptosis after renal ischemia/reperfusion injury in rat. Transpl. Int. 21, 364–371 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Eldaif, S. M. et al. Attenuation of renal ischemia-reperfusion injury by postconditioning involves adenosine receptor and protein kinase C activation. Transpl. Int. 23, 217–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Kaur, S., Jaggi, A. S. & Singh, N. Molecular aspects of ischaemic postconditioning. Fundam. Clin. Pharmacol. 23, 521–536 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Penna, C., Mancardi, D., Raimondo, S., Geuna, S. & Pagliaro, P. The paradigm of postconditioning to protect the heart. J. Cell. Mol. Med. 12, 435–458 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Dal Ponte, C. et al. Pharmacological postconditioning protects against hepatic ischemia/reperfusion injury. Liver Transpl. 17, 474–482 (2011).

    Article  PubMed  Google Scholar 

  113. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  114. Ritter, T., Nosov, M. & Griffin, M. D. Gene therapy in transplantation: toward clinical trials. Curr. Opin. Mol. Ther. 11, 504–512 (2009).

    CAS  PubMed  Google Scholar 

  115. Molitoris, B. A. et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J. Am. Soc. Nephrol. 20, 1754–1764 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li, N. et al. Adjuvant adenovirus-mediated delivery of herpes simplex virus thymidine kinase administration improves outcome of liver transplantation in patients with advanced hepatocellular carcinoma. Clin. Cancer Res. 13, 5847–5854 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Benigni, A., Morigi, M. & Remuzzi, G. Kidney regeneration. Lancet 375, 1310–1317 (2011).

    Article  CAS  Google Scholar 

  118. Humphreys, B. D. & Bonventre, J. V. The contribution of adult stem cells to renal repair. Nephrol. Ther. 3, 3–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Valina, C. et al. Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur. Heart J. 28, 2667–2677 (2007).

    Article  PubMed  Google Scholar 

  120. Mazo, M. et al. Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. Eur. J. Heart Fail. 10, 454–462 (2008).

    Article  PubMed  Google Scholar 

  121. Kim, Y. et al. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell. Physiol. Biochem. 20, 867–876 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Feng, Z. et al. Fresh and cryopreserved, uncultured adipose tissue-derived stem and regenerative cells ameliorate ischemia-reperfusion-induced acute kidney injury. Nephrol. Dial. Transplant. 25, 3874–3884 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Baer, P. C. Adipose-derived stem cells and their potential to differentiate into the epithelial lineage. Stem Cells Dev. 20, 1805–1816 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Hara, Y. et al. In vivo effect of bone marrow-derived mesenchymal stem cells in a rat kidney transplantation model with prolonged cold ischemia. Transpl. Int. 24, 1112–1123 (2011).

    Article  PubMed  Google Scholar 

  125. De Coppi, P. et al. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25, 100–106 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Trounson, A. A fluid means of stem cell generation. Nat. Biotechnol. 25, 62–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Blotiere, P. O., Tuppin, P., Weill, A., Ricordeau, P. & Allemand, H. The cost of dialysis and kidney transplantation in France in 2007, impact of an increase of peritoneal dialysis and transplantation [French]. Nephrol. Ther. 6, 240–247 (2010).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, contributed to the discussion of content and wrote the article. D. Bon and T. Hauet reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Thierry Hauet.

Ethics declarations

Competing interests

T. Hauet is an independent inventor and holder of European patent EP1997374 with MacoPharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bon, D., Chatauret, N., Giraud, S. et al. New strategies to optimize kidney recovery and preservation in transplantation. Nat Rev Nephrol 8, 339–347 (2012). https://doi.org/10.1038/nrneph.2012.83

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.83

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing