Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Localization and function of the renal calcium-sensing receptor

Key Points

  • A pivotal role for the renal calcium-sensing receptor (CaSR) in the control of divalent cation excretion in a parathyroid hormone-independent manner has been identified through tissue-specific CaSR ablation and pharmacological studies

  • A functional interaction between the CaSR and Claudin-14 in the thick ascending limb permits regulation of paracellular Ca2+ reabsorption

  • The CaSR fine tunes Ca2+, Mg2+, and Pi transport in the proximal tubule by integrating multiple inputs from divalent cation concentration, osmolarity, and urine acidification

  • Calcimimetics would be expected to increase urinary Ca2+ excretion by acting on the CaSR in the parathyroid glands and the kidney

  • Calcilytics represent a novel, promising avenue for the treatment of hypercalciuria, nephrolithiasis, and nephrocalcinosis

  • The CaSR and adenylyl cyclase type 6 are co-expressed in the nephron and act to sensitize hormones to extracellular Ca2+ and counteract hormone-induced increases in cAMP

Abstract

The ability to monitor changes in the ionic composition of the extracellular environment is a crucial feature that has evolved in all living organisms. The cloning and characterization of the extracellular calcium-sensing receptor (CaSR) from the mammalian parathyroid gland in the early 1990s provided the first description of a cellular, ion-sensing mechanism. This finding demonstrated how cells can detect small, physiological variations in free ionized calcium (Ca2+) in the extracellular fluid and subsequently evoke an appropriate biological response by altering the secretion of parathyroid hormone (PTH) that acts on PTH receptors expressed in target tissues, including the kidney, intestine, and bone. Aberrant Ca2+ sensing by the parathyroid glands, as a result of altered CaSR expression or function, is associated with impaired divalent cation homeostasis. CaSR activators that mimic the effects of Ca2+ (calcimimetics) have been designed to treat hyperparathyroidism, and CaSR antagonists (calcilytics) are in development for the treatment of hypercalciuric disorders. The kidney expresses a CaSR that might directly contribute to the regulation of many aspects of renal function in a PTH-independent manner. This Review discusses the roles of the renal CaSR and the potential impact of pharmacological modulation of the CaSR on renal function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of the calcium-sensing receptor (CaSR) in the kidney tubule.
Figure 2: The calcium-sensing receptor (CaSR) confers high sensitivity to extracellular Ca2+ concentration by reducing the effects of distinct hormones that selectively act in selected nephron segments via the Gs-coupled receptor–ADCY6–cAMP signalling pathway.

Similar content being viewed by others

References

  1. Brown, E. M. et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366, 575–580 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Brown, E. M. & MacLeod, R. J. Extracellular calcium sensing and extracellular calcium signaling. Physiol. Rev. 81, 239–297 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Block, G. A. et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N. Engl. J. Med. 350, 1516–1525 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Bushinsky, D. A. et al. Treatment of secondary hyperparathyroidism: results of a phase 2 trial evaluating an intravenous peptide agonist of the calcium-sensing receptor. Am. J. Nephrol. 42, 379–388 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01788046 (2015).

  6. Letz, S. et al. Amino alcohol- (NPS-2143) and quinazolinone-derived calcilytics (ATF936 and AXT914) differentially mitigate excessive signalling of calcium-sensing receptor mutants causing Bartter syndrome Type 5 and autosomal dominant hypocalcemia. PLoS ONE 9, e115178 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Riccardi, D. et al. Localization of the extracellular Ca2+/polyvalent cation-sensing protein in rat kidney. Am. J. Physiol. 274, F611–F622 (1998).

    CAS  PubMed  Google Scholar 

  8. Marx, S. J. et al. Circulating parathyroid hormone activity: familial hypocalciuric hypercalcemia versus typical primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 47, 1190–1197 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Attie, M. F. et al. Urinary calcium excretion in familial hypocalciuric hypercalcemia. Persistence of relative hypocalciuria after induction of hypoparathyroidism. J. Clin. Invest. 72, 667–676 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Loupy, A. et al. PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor. J. Clin. Invest. 122, 3355–3367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gong, Y. et al. Claudin-14 regulates renal Ca++ transport in response to CaSR signalling via a novel microRNA pathway. EMBO J. 31, 1999–2012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gong, Y. & Hou, J. Claudin-14 underlies Ca++-sensing receptor-mediated Ca++ metabolism via NFAT-microRNA-based mechanisms. J. Am. Soc. Nephrol. 25, 745–760 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Gong, Y., Himmerkus, N., Plain, A., Bleich, M. & Hou, J. Epigenetic regulation of microRNAs controlling CLDN14 expression as a mechanism for renal calcium handling. J. Am. Soc. Nephrol. 26, 663–676 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Riccardi, D. & Brown, E. M. Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am. J. Physiol. Renal Physiol. 298, F485–F499 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Graca, J. A. Z. et al. Comparative expression of the extracellular calcium sensing receptor in mouse, rat, and human kidney. Am. J. Physiol. Renal Physiol. 310, F518–F533 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kwak, J. O. et al. The extracellular calcium sensing receptor is expressed in mouse mesangial cells and modulates cell proliferation. Exp. Mol. Med. 37, 457–465 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Meng, K. et al. Calcium sensing receptor modulates extracellular calcium entry and proliferation via TRPC3/6 channels in cultured human mesangial cells. PLoS ONE 9, e98777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oh, J. et al. Stimulation of the calcium-sensing receptor stabilizes the podocyte cytoskeleton, improves cell survival, and reduces toxin-induced glomerulosclerosis. Kidney Int. 80, 483–492 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Gut, N. et al. The calcimimetic R-568 prevents podocyte loss in uninephrectomized ApoE−/− mice. Am. J. Physiol. Renal Physiol. 305, F277–F285 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, L. et al. Gq signaling causes glomerular injury by activating TRPC6. J. Clin. Invest. 125, 1913–1926 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Churchill, P. C. Second messengers in renin secretion. Am. J. Physiol. 249, F175–F184 (1985).

    CAS  PubMed  Google Scholar 

  22. Atchison, D. K., Ortiz-Capisano, M. C. & Beierwaltes, W. H. Acute activation of the calcium-sensing receptor inhibits plasma renin activity in vivo. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R1020–R1026 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grunberger, C., Obermayer, B., Klar, J., Kurtz, A. & Schweda, F. The calcium paradoxon of renin release: calcium suppresses renin exocytosis by inhibition of calcium-dependent adenylate cyclases AC5 and AC6. Circ. Res. 99, 1197–1206 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Beierwaltes, W. H. The role of calcium in the regulation of renin secretion. Am. J. Physiol. Renal Physiol. 298, F1–F11 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Murer, H., Hernando, N., Forster, I. & Biber, J. Molecular aspects in the regulation of renal inorganic phosphate reabsorption: the type IIa sodium/inorganic phosphate co-transporter as the key player. Curr. Opin. Nephrol. Hypertens. 10, 555–561 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Ba, J., Brown, D. & Friedman, P. A. Calcium-sensing receptor regulation of PTH-inhibitable proximal tubule phosphate transport. Am. J. Physiol. Renal Physiol. 285, F1233–F1243 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Di Mise, A. et al. Conditionally immortalized human proximal tubular epithelial cells isolated from the urine of a healthy subject express functional calcium-sensing receptor. Am. J. Physiol. Renal Physiol. 308, F1200–F1206 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Riccardi, D. et al. Dietary phosphate and parathyroid hormone alter the expression of the calcium-sensing receptor (CaR) and the Na+-dependent Pi transporter (NaPi-2) in the rat proximal tubule. Pflugers Arch. 441, 379–387 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Bland, R., Walker, E. A., Hughes, S. V., Stewart, P. M. & Hewison, M. Constitutive expression of 25-hydroxyvitamin D3-1α-hydroxylase in a transformed human proximal tubule cell line: evidence for direct regulation of vitamin D metabolism by calcium. Endocrinology 140, 2027–2034 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Egbuna, O. et al. The full-length calcium-sensing receptor dampens the calcemic response to 1α,25(OH)2 vitamin D3 in vivo independently of parathyroid hormone. Am. J. Physiol. Renal Physiol. 297, F720–F728 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Capasso, G. et al. The calcium sensing receptor modulates fluid reabsorption and acid secretion in the proximal tubule. Kidney Int. 84, 277–284 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, Y. et al. In vivo PTH provokes apical NHE3 and NaPi2 redistribution and Na-K-ATPase inhibition. Am. J. Physiol. 276, F711–F719 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Friedman, P. A. Codependence of renal calcium and sodium transport. Annu. Rev. Physiol. 60, 179–197 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Wittner, M., Mandon, B., Roinel, N., de Rouffignac, C. & Di Stefano, A. Hormonal stimulation of Ca2+ and Mg2+ transport in the cortical thick ascending limb of Henle's loop of the mouse: evidence for a change in the paracellular pathway permeability. Pflugers Arch. 423, 387–396 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Takaichi, K. & Kurokawa, K. High Ca2+ inhibits peptide hormone-dependent cAMP production specifically in thick ascending limbs of Henle. Miner. Electrolyte Metab. 12, 342–346 (1986).

    CAS  PubMed  Google Scholar 

  36. de Jesus Ferreira, M. C. et al. Co-expression of a Ca2+-inhibitable adenylyl cyclase and of a Ca2+-sensing receptor in the cortical thick ascending limb cell of the rat kidney. Inhibition of hormone-dependent cAMP accumulation by extracellular Ca2+. J. Biol. Chem. 273, 15192–15202 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Kieferle, S., Fong, P., Bens, M., Vandewalle, A. & Jentsch, T. J. Two highly homologous members of the ClC chloride channel family in both rat and human kidney. Proc. Natl Acad. Sci. USA 91, 6943–6947 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Welling, P. A. & Ho, K. A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am. J. Physiol. Renal Physiol. 297, F849–F863 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, W., Lu, M., Balazy, M. & Hebert, S. C. Phospholipase A2 is involved in mediating the effect of extracellular Ca2+ on apical K+ channels in rat TAL. Am. J. Physiol. 273, F421–F429 (1997).

    CAS  PubMed  Google Scholar 

  40. Kong, S. et al. Stimulation of Ca2+-sensing receptor inhibits the basolateral 50-pS K channels in the thick ascending limb of rat kidney. Biochim. Biophys. Acta 1823, 273–281 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Toka, H. R., Pollak, M. R. & Houillier, P. Calcium sensing in the renal tubule. Physiology (Bethesda) 30, 317–326 (2015).

    CAS  Google Scholar 

  42. Vargas-Poussou, R. et al. Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J. Am. Soc. Nephrol. 13, 2259–2266 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Vezzoli, G. et al. Autosomal dominant hypocalcemia with mild type 5 Bartter syndrome. J. Nephrol. 19, 525–528 (2006).

    CAS  PubMed  Google Scholar 

  44. Simon, D. B. et al. Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK. Nat. Genet. 14, 152–156 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Simon, D. B. et al. Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na–K–2Cl cotransporter NKCC2. Nat. Genet. 13, 183–188 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Dimke, H. et al. Activation of the Ca2+-sensing receptor increases renal claudin-14 expression and urinary Ca2+ excretion. Am. J. Physiol. Renal Physiol. 304, F761–F769 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Toka, H. R. et al. Deficiency of the calcium-sensing receptor in the kidney causes parathyroid hormone-independent hypocalciuria. J. Am. Soc. Nephrol. 23, 1879–1890 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Courbebaisse, M. et al. Effects of cinacalcet in renal transplant patients with hyperparathyroidism. Am. J. Nephrol. 35, 341–348 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. de Groot, T. et al. Parathyroid hormone activates TRPV5 via PKA-dependent phosphorylation. J. Am. Soc. Nephrol. 20, 1693–1704 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. de Groot, T., Bindels, R. J. & Hoenderop, J. G. TRPV5: an ingeniously controlled calcium channel. Kidney Int. 74, 1241–1246 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Topala, C. N. et al. Activation of the Ca2+-sensing receptor stimulates the activity of the epithelial Ca2+ channel TRPV5. Cell Calcium 45, 331–339 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Huang, C. et al. Interaction of the Ca2+-sensing receptor with the inwardly rectifying potassium channels Kir4.1 and Kir4.2 results in inhibition of channel function. Am. J. Physiol. Renal Physiol. 292, F1073–F1081 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Yang, T. et al. Expression of PTHrP, PTH/PTHrP receptor, and Ca(2+)-sensing receptor mRNAs along the rat nephron. Am. J. Physiol. 272, F751–F758 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Renkema, K. Y. et al. The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis. J. Am. Soc. Nephrol. 20, 1705–1713 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tessitore, N. et al. Renal acidification defects in patients with recurrent calcium nephrolithiasis. Nephron 41, 325–332 (1985).

    Article  CAS  PubMed  Google Scholar 

  56. Buckalew, V. M. Jr Nephrolithiasis in renal tubular acidosis. J. Urol. 141, 731–737 (1989).

    Article  PubMed  Google Scholar 

  57. Sands, J. M. et al. Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct. J. Clin. Invest. 99, 1399–1405 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brown, E. M. Physiology and pathophysiology of the extracellular calcium-sensing receptor. Am. J. Med. 106, 238–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Earm, J. H. et al. Decreased aquaporin-2 expression and apical plasma membrane delivery in kidney collecting ducts of polyuric hypercalcemic rats. J. Am. Soc. Nephrol. 9, 2181–2193 (1998).

    CAS  PubMed  Google Scholar 

  60. Valenti, G. et al. Urinary aquaporin 2 and calciuria correlate with the severity of enuresis in children. J. Am. Soc. Nephrol. 11, 1873–1881 (2000).

    CAS  PubMed  Google Scholar 

  61. Valenti, G. et al. Low-calcium diet in hypercalciuric enuretic children restores AQP2 excretion and improves clinical symptoms. Am. J. Physiol. Renal Physiol. 283, F895–F903 (2002).

    Article  PubMed  Google Scholar 

  62. Procino, G. et al. Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells. Kidney Int. 66, 2245–2255 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Bustamante, M. et al. Calcium-sensing receptor attenuates AVP-induced aquaporin-2 expression via a calmodulin-dependent mechanism. J. Am. Soc. Nephrol. 19, 109–116 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Renkema, K. Y. et al. TRPV5 gene polymorphisms in renal hypercalciuria. Nephrol. Dial. Transplant. 24, 1919–1924 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Procino, G. et al. Calcium-sensing receptor and aquaporin 2 interplay in hypercalciuria-associated renal concentrating defect in humans. An in vivo and in vitro study. PLoS ONE 7, e33145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ranieri, M. et al. Negative feedback from CaSR signaling to aquaporin-2 sensitizes vasopressin to extracellular Ca2+. J. Cell Sci. 128, 2350–2360 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Tamma, G. et al. A decrease in aquaporin 2 excretion is associated with bed rest induced high calciuria. J. Transl. Med. 12, 133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Procino, G. et al. Aquaporin 2 and apical calcium-sensing receptor: new players in polyuric disorders associated with hypercalciuria. Semin. Nephrol. 28, 297–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Bergsland, K. J., Coe, F. L., Gillen, D. L. & Worcester, E. M. A test of the hypothesis that the collecting duct calcium-sensing receptor limits rise of urine calcium molarity in hypercalciuric calcium kidney stone formers. Am. J. Physiol. Renal Physiol. 297, F1017–F1023 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fenton, R. A. et al. Renal phosphate wasting in the absence of adenylyl cyclase 6. J. Am. Soc. Nephrol. 25, 2822–2834 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rieg, T. et al. Adenylyl cyclase 6 enhances NKCC2 expression and mediates vasopressin-induced phosphorylation of NKCC2 and NCC. Am. J. Pathol. 182, 96–106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nearing, J. et al. Polyvalent cation receptor proteins (CaRs) are salinity sensors in fish. Proc. Natl Acad. Sci. USA 99, 9231–9236 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ortiz-Capisano, M. C., Reddy, M., Mendez, M., Garvin, J. L. & Beierwaltes, W. H. Juxtaglomerular cell CaSR stimulation decreases renin release via activation of the PLC/IP3 pathway and the ryanodine receptor. Am. J. Physiol. Renal Physiol. 304, F248–F256 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Gimenez, I. & Forbush, B. Short-term stimulation of the renal Na–K–Cl cotransporter (NKCC2) by vasopressin involves phosphorylation and membrane translocation of the protein. J. Biol. Chem. 278, 26946–26951 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Gunaratne, R. et al. Quantitative phosphoproteomic analysis reveals cAMP/vasopressin-dependent signaling pathways in native renal thick ascending limb cells. Proc. Natl Acad. Sci. USA 107, 15653–15658 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hoffert, J. D., Chou, C. L., Fenton, R. A. & Knepper, M. A. Calmodulin is required for vasopressin-stimulated increase in cyclic AMP production in inner medullary collecting duct. J. Biol. Chem. 280, 13624–13630 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Rieg, T. et al. Adenylate cyclase 6 determines cAMP formation and aquaporin-2 phosphorylation and trafficking in inner medulla. J. Am. Soc. Nephrol. 21, 2059–2068 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chabardes, D. et al. Localization of mRNAs encoding Ca2+-inhibitable adenylyl cyclases along the renal tubule. Functional consequences for regulation of the cAMP content. J. Biol. Chem. 271, 19264–19271 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Helies-Toussaint, C., Aarab, L., Gasc, J. M., Verbavatz, J. M. & Chabardes, D. Cellular localization of type 5 and type 6 ACs in collecting duct and regulation of cAMP synthesis. Am. J. Physiol. Renal Physiol. 279, F185–F194 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Roos, K. P., Strait, K. A., Raphael, K. L., Blount, M. A. & Kohan, D. E. Collecting duct-specific knockout of adenylyl cyclase type VI causes a urinary concentration defect in mice. Am. J. Physiol. Renal Physiol. 302, F78–F84 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Vezzoli, G., Terranegra, A. & Soldati, L. Calcium-sensing receptor gene polymorphisms in patients with calcium nephrolithiasis. Curr. Opin. Nephrol. Hypertens. 21, 355–361 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Kelly, C., Gunn, I. R., Gaffney, D. & Devgun, M. S. Serum calcium, urine calcium and polymorphisms of the calcium sensing receptor gene. Ann. Clin. Biochem. 43, 503–506 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Bushinsky, D. A. Nephrolithiasis: site of the initial solid phase. J. Clin. Invest. 111, 602–605 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thorleifsson, G. et al. Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat. Genet. 41, 926–930 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Hou, J. The role of claudin in hypercalciuric nephrolithiasis. Curr. Urol. Rep. 14, 5–12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Arcidiacono, T. et al. Idiopathic calcium nephrolithiasis: a review of pathogenic mechanisms in the light of genetic studies. Am. J. Nephrol. 40, 499–506 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Lerolle, N. et al. No evidence for point mutations of the calcium-sensing receptor in familial idiopathic hypercalciuria. Nephrol. Dial. Transplant. 16, 2317–2322 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Petrucci, M. et al. Evaluation of the calcium-sensing receptor gene in idiopathic hypercalciuria and calcium nephrolithiasis. Kidney Int. 58, 38–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Vezzoli, G. et al. R990G polymorphism of calcium-sensing receptor does produce a gain-of-function and predispose to primary hypercalciuria. Kidney Int. 71, 1155–1162 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Harding, B. et al. Functional characterization of calcium sensing receptor polymorphisms and absence of association with indices of calcium homeostasis and bone mineral density. Clin. Endocrinol. (Oxf.) 65, 598–605 (2006).

    Article  CAS  Google Scholar 

  91. Vezzoli, G. et al. Decreased transcriptional activity of calcium-sensing receptor gene promoter 1 is associated with calcium nephrolithiasis. J. Clin. Endocrinol. Metab. 98, 3839–3847 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vezzoli, G. et al. Risk of nephrolithiasis in primary hyperparathyroidism is associated with two polymorphisms of the calcium-sensing receptor gene. J. Nephrol. 28, 67–72 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Oddsson, A. et al. Common and rare variants associated with kidney stones and biochemical traits. Nat. Commun. 6, 7975 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Fitzpatrick, L. A. et al. The effects of ronacaleret, a calcium-sensing receptor antagonist, on bone mineral density and biochemical markers of bone turnover in postmenopausal women with low bone mineral density. J. Clin. Endocrinol. Metab. 96, 2441–2449 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Kimura, S. et al. JTT-305, an orally active calcium-sensing receptor antagonist, stimulates transient parathyroid hormone release and bone formation in ovariectomized rats. Eur. J. Pharmacol. 668, 331–336 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Marie Curie Initial Training Network for the project “Multifaceted CaSR” (to D.R.) and Telethon funding for the project “Aquaporin-2 and calcium-sensing receptor: new players regulating water handling in familial hypercalciuria” (to G.V.). The authors are grateful to Drs Edward M. Brown, Dennis Brown and the late Steven Hebert for their mentorship and support, and for inspiring their work on the renal CaSR.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, provided a substantial contribution to discussions of the content, contributed equally to writing the article and to review and/or editing of the manuscript before submission.

Corresponding authors

Correspondence to Daniela Riccardi or Giovanna Valenti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riccardi, D., Valenti, G. Localization and function of the renal calcium-sensing receptor. Nat Rev Nephrol 12, 414–425 (2016). https://doi.org/10.1038/nrneph.2016.59

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.59

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing