Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Entropy as the driver of chromosome segregation

Abstract

We present a new physical biology approach to understanding the relationship between the organization and segregation of bacterial chromosomes. We posit that replicated Escherichia coli daughter strands will spontaneously demix as a result of entropic forces, despite their strong confinement within the cell; in other words, we propose that entropy can act as a primordial physical force which drives chromosome segregation under the right physical conditions. Furthermore, proteins implicated in the regulation of chromosome structure and segregation may in fact function primarily in supporting such an entropy-driven segregation mechanism by regulating the physical state of chromosomes. We conclude that bacterial chromosome segregation is best understood in terms of spontaneous demixing of daughter strands. Our concept may also have important implications for chromosome segregation in eukaryotes, in which spindle-dependent chromosome movement follows an extended period of sister chromatid demixing and compaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Predicting chromosome segregation using physical parameters of the nucleoid.
Figure 2: Physical model of a bacterial chromosome and its segregation.

Similar content being viewed by others

References

  1. Kornberg, A. & Baker, T. A. DNA Replication 2nd edn (Freeman & Company, New York, 1992).

    Google Scholar 

  2. Murray, A. & Hunt, T. (eds) The Cell Cycle: an Introduction. (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  3. Wang, J. C. DNA topoisomerases. Annu. Rev. Biochem. 65, 635–692 (1996).

    Article  CAS  Google Scholar 

  4. Sullivan, N. L., Marquis, K. A. & Rudner, D. Z. Recruitment of SMC to the origin by ParB-parS organizes the origin and promotes efficient chromosome segregation. Cell 137, 697–707 (2009).

    Article  CAS  Google Scholar 

  5. Gruber, S. & Errington, J. Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137, 685–696 (2009).

    Article  CAS  Google Scholar 

  6. Salje, J., Zuber, B. & Löwe, J. Electron cryomicroscopy of E. coli reveals ParM filament bundles involved in plasmid segregation. Science 323, 509–512 (2009).

    Article  CAS  Google Scholar 

  7. deGennes, P.-G. Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, New York, 1979).

    Google Scholar 

  8. Bloom, K. & Joglekar, A. Towards building a chromosome segregation machine. Nature 463, 446–456 (2010).

    Article  CAS  Google Scholar 

  9. Stavans, J. & Oppenheim, A. DNA-protein interactions and bacterial chromosome architecture. Phys. Biol. 3, R1–R10 (2006).

    Article  CAS  Google Scholar 

  10. Woldringh, C. L. & Odijk, T. in Organization of the Prokaryotic Genome (ed. Charlebois, R. L.) 171–187 (American Society for Microbiology, Washington DC, 1999).

    Book  Google Scholar 

  11. Romantsov, T., Fishov, I. & Krichevsky, O. Internal structure and dynamics of isolated Escherichia coli nucleoids assessed by fluorescence correlation spectroscopy. Biophys. J. 92, 2875–2884 (2007).

    Article  CAS  Google Scholar 

  12. Derman, A. I., Lim-Fong, G. & Pogliano, J. Intracellular mobility of plasmid DNA is limited by the ParA family of partitioning systems. Mol. Microbiol. 67, 935–946 (2008).

    Article  CAS  Google Scholar 

  13. Jun, S., Arnold, A. & Ha, B.-Y. Confined space and effective interactions of multiple self-avoiding chains. Phys. Rev. Lett. 98, 128303 (2007).

    Article  Google Scholar 

  14. Sawitzke, J. A. & Austin, S. Suppression of chromosome segregation defects of Escherichia coli muk mutants by mutations in topoisomerase I. Proc. Natl Acad. Sci. USA 97, 1671–1676 (2000).

    Article  CAS  Google Scholar 

  15. Jun, S. & Mulder, B. Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome. Proc. Natl Acad. Sci. USA 103, 12388–12393 (2006).

    Article  CAS  Google Scholar 

  16. Trun, N. J. & Marko, J. F. Architecture of a bacterial chromosome. ASM News 64, 276–283 (1998).

    Google Scholar 

  17. Vilgis, T. A. Polymer theory: path integrals and scaling. Phys. Rep. 336, 167–254 (2000).

    Article  CAS  Google Scholar 

  18. Huang, J. C. & Wingreen, N. Min-protein oscillations in round bacteria. Phys. Biol. 1, 229–235 (2004).

    Article  CAS  Google Scholar 

  19. Corbin, B. D., Yu, X.-C. & Margolin, W. Exploring intracellular space: function of the Min system in round-shaped Escherichia coli. EMBO J. 21, 1998–2008 (2002).

    Article  CAS  Google Scholar 

  20. Berlatzky, I. A., Rouvinski, A. & Ben-Yehuda, S. Spatial organization of a replicating bacterial chromosome. Proc. Natl Acad. Sci. USA 105, 14136–14140 (2008).

    Article  CAS  Google Scholar 

  21. Nordstrom, K. & Austin, S. J. Mechanisms that contribute to the stable segregation of plasmids. Annu. Rev. Genet. 23, 37–69 (1989).

    Article  CAS  Google Scholar 

  22. Gordon, G. S. et al. Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell 90, 1113–1121 (1997).

    Article  CAS  Google Scholar 

  23. Danilova, O., Reyes-Lamothe, R., Pinskaya, M., Sherratt, D. & Possoz, C. MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves. Mol. Microbiol. 65, 1485–1492 (2007).

    Article  CAS  Google Scholar 

  24. Viollier, P. H., Thanbichle, M., McGrath, P. T., West, L. & Meewan, M. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc. Natl Acad. Sci. USA 101, 9257–9262 (2004).

    Article  CAS  Google Scholar 

  25. Fogel, M. A. & Waldor, M. K. A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev. 20, 3269–3282 (2006).

    Article  CAS  Google Scholar 

  26. Fiebig, A., Keren, K. & Theriot, J. A. Fine-scale time-lapse analysis of the biphasic, dynamic behaviour of the two Vibrio cholerae chromosomes. Mol. Microbiol. 60, 1164–1178 (2006).

    Article  CAS  Google Scholar 

  27. Toro, E., Hong, S.-H., McAdams, H. H. & Shapiro, L. Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Proc. Natl Acad. Sci. USA 105, 15435–15440 (2008).

    Article  CAS  Google Scholar 

  28. Nasmyth, K. Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559–565 (2002).

    Article  CAS  Google Scholar 

  29. Barre, F.-X. FtsK and SpoIIIE: the tale of the conserved tails. Mol. Microbiol. 66, 1051–1055 (2007).

    Article  CAS  Google Scholar 

  30. Lemon, K. P. & Grossman, A. D. The extrusion capture model for chromosome partitioning in bacteria. Genes Dev. 15, 2031–2041 (2001).

    Article  CAS  Google Scholar 

  31. Migocki, M. D., Lewis, P. J., Wake, R. G. & Harry, E. J. The midcell replication factory in Bacillus subtilis is highly mobile: implications for coordinating chromosome replication with other cell cycle events. Mol. Microbiol. 54, 452–463 (2004).

    Article  CAS  Google Scholar 

  32. Bates, D. The bacterial replisome: back on track? Mol. Microbiol. 69, 1341–1348 (2008).

    Article  CAS  Google Scholar 

  33. Reyes-Lamothe, R., Possoz, C., Danilova, O. & Sherratt, D. J. Independent positioning and action of Escherichia coli replisomes in live cells. Cell 133, 90–102 (2008).

    Article  CAS  Google Scholar 

  34. Dworkin, J. & Losick, R. Does RNA polymerase help drive chromosome segregation in bacteria? Proc. Natl Acad. Sci. USA 99, 14089–14094 (2002).

    Article  CAS  Google Scholar 

  35. Woldringh, C. L. The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol. Microbiol. 45, 17–29 (2002).

    Article  CAS  Google Scholar 

  36. Fan, J., Tuncay, K. & Ortoleva, P. J. Chromosome segregation in Escherichia coli division: a free energy-driven string model. Comput. Biol. Chem. 31, 257–264 (2007).

    Article  CAS  Google Scholar 

  37. Holmes, V. F. & Cozzarelli, N. R. Closing the ring: links between SMC proteins and chromosome partitioning, condensation, and supercoiling. Proc. Natl Acad. Sci. USA 97, 1322–1324 (2000).

    Article  CAS  Google Scholar 

  38. Dasgupta, S., Maisnier-Patin, S. & Nordstrom, K. New genes with old modus operandi: the connection between supercoiling and partitioning of DNA in Escherichia coli. EMBO Rep. 1, 323–327 (2000).

    Article  CAS  Google Scholar 

  39. Weart, R. B. et al. A metabolic sensor governing cell size in bacteria. Cell 130, 335–347 (2007).

    Article  CAS  Google Scholar 

  40. Madabhushi, R. & Marians, K. J. Active homolog MreB affects chromosome segregation by regulating topoisomerase IV in Escherichia coli. Mol. Cell 33, 171–180 (2009).

    Article  CAS  Google Scholar 

  41. Wang, X., Liu, X., Possoz, C. & Sherratt, D. J. The two Escherichia coli chromosome arms locate to separate cell halves. Genes Dev. 20, 1727–1731 (2006).

    Article  CAS  Google Scholar 

  42. Nielsen, H. J., Ottensen, J. R., Youngren, B., Austin, S. J. & Hansen, F. G. The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves. Mol. Microbiol. 62, 331–338 (2006).

    Article  CAS  Google Scholar 

  43. Nielsen, H. J., Li, Y., Youngren, B., Hansen, F. G. & Austin, S. J. Progressive segregation of the Escherichia coli chromosome. Mol. Microbiol. 61, 383–393 (2006).

    Article  CAS  Google Scholar 

  44. Wiggins, P. A., Cheveralls, K., Martin, J. S., Lintner, R. & Kondev, J. Strong intranucleoid interactions organize the Escherichia coli chromosome into a nucleoid filament. Proc. Natl Acad. Sci. USA 107, 4991–4995 (2010)

    Article  CAS  Google Scholar 

  45. White, M. A., Eykelenboom, J. K., Lopez-Vernaza, M. A., Wilson, E. & Leach, D. R. F. Non-random segregation of sister chromosomes in Escherichia coli. Nature 455, 1248–1250 (2008).

    Article  CAS  Google Scholar 

  46. Reyes-Lamothe, R., Wang, X. & Sherratt, D. Escherichia coli and its chromosome. Trends Microbiol. 16, 238–245 (2008).

    Article  CAS  Google Scholar 

  47. Kleckner, N. et al. A mechanical basis for chromosome function. Proc. Natl Acad. Sci. USA 101, 12592–12597 (2004).

    Article  CAS  Google Scholar 

  48. Bates, D. & Kleckner, N. Chromosome and replisome dynamics in E. coli: loss of sister cohesion triggers global chromosome movement and mediates chromosome segregation. Cell 121, 899–911 (2005).

    Article  CAS  Google Scholar 

  49. Woldringh, C. L. & van Driel, R. in Organization of the Prokaryotic Genome Ch. 5 (ed. Charlebois, R. L.) 77–90 (American Society for Microbiology, Washington DC, 1999).

    Book  Google Scholar 

  50. Schrödinger, E. What is life? (Cambridge Univ. Press, Cambridge, UK, 1944).

    Google Scholar 

  51. Flory, P. Principles of Polymer Chemistry (Cornell Univ. Press, Ithaca, New York, 1953).

    Google Scholar 

  52. Grosberg, A. Y., Khalatur, P. G. & Khokhloo, A. R. Polymeric coils with excluded volume in dilute solution: the invalidity of the model of impenetrable spheres and the influence of excluded volume on the rates of diffusion-controlled intermacromolecular reactions. Makromol. Chem. Rapid Commun. 3, 709–713 (1982).

    Article  CAS  Google Scholar 

  53. Pincus, P. Excluded volume effects and stretched polymer chains. Macromolecules 9, 386–388 (1976).

    Article  CAS  Google Scholar 

  54. Liu, Z., Zechiedrich, E. L. & Chan, H. S. Inferring global topology from local juxtaposition geometry: interlinking polymer rings and ramifications for topoisomerase action. Biophys. J. 90, 2344–2355 (2006).

    Article  CAS  Google Scholar 

  55. Jacob, F., Brenner, S. & Cuzin, F. On the regulation of DNA replication in bacteria. Cold Spring Harb. Symp. Quant. Biol. 28, 329–348 (1963).

    Article  CAS  Google Scholar 

  56. Kruse, T. & Gerdes, K. Bacterial DNA segregationby the actin-like MreB protein. Trends. Cell Biol. 15, 343–345 (2005).

    Article  CAS  Google Scholar 

  57. Hu, B., Yang, G., Zhao, W., Zhang, Y. & Zhao, J. MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp. PCC 7120. Mol. Microbiol. 63, 1640–1652 (2007).

    Article  CAS  Google Scholar 

  58. Karczmarek, A. et al. DNA and origin region segregation are not affected by the transition from rod to sphere after inhibition of Escherichia coli MreB by A22. Mol. Microbiol. 65, 51–63 (2007).

    Article  CAS  Google Scholar 

  59. Yamaichi, Y. & Niki, H. migS, a cis-acting site that affects bipolar positioning of oriC on the Escherichia coli chromosome. EMBO J. 23, 221–233 (2004).

    Article  CAS  Google Scholar 

  60. Niki, H., Jaffe, A., Imamura, R., Ogura, T. & Hiraga, S. The new gene mukB codes for a 177 kD protein with coiled-coil domains involved in chromosome partitioning of E. coli. EMBO J. 10, 183–193 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are deeply grateful to T. Mitchison for his penetrating insight and numerous invaluable suggestions. We thank N. Kleckner and C. Woldringh for critical reading of the manuscript. We also thank J.-Y. Bouet, A. Brouniquel, A. Danchin, E. Garner, B.-Y. Ha, R. Losick, K. Maeshima, B. Mulder, A. Murray, P. Wiggins and many other colleagues for helpful discussions over the years. This work was supported by Harvard University, USA, and the US National Institutes of Health (grant P50 GM068763 to S.J.).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus subtilis

Caulobacter crescentus

Escherichia coli

Vibrio cholerae

FURTHER INFORMATION

Suckjoon Jun's homepage

Andrew Wright's homepage

Glossary

Contour length

The length of the polymer at maximum extension.

Ideal gas

A theoretical gas consisting of randomly-moving, non-interacting point particles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jun, S., Wright, A. Entropy as the driver of chromosome segregation. Nat Rev Microbiol 8, 600–607 (2010). https://doi.org/10.1038/nrmicro2391

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2391

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology