Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis

Key Points

  • The global tuberculosis (TB) epidemic has not dwindled but has actually grown, largely owing to the challenges that are presented by persistence and resistance. Huge advances in therapeutic regimens are needed to dramatically reduce the course of treatment from months to days.

  • To realize the vulnerabilities of Mycobacterium tuberculosis, genetic methods are being applied to identify genes that are essential to the various metabolic states that are believed to be pertinent to both the establishment and maintenance of infection.

  • The respective essential gene products are being explored using industry-validated drug-discovery methods to produce potential drug candidates. High-throughput virtual and biochemical screening efforts are described, in addition to 'lower-throughput' structure-based designs.

  • Antituberculars in clinical trials are discussed in terms of their respective modes of action and relative strengths and weaknesses as compared with current treatment modalities.

  • A select number of non-TB-approved drugs are described with regard to their potential for being applied as antituberculars. The list includes anti-infectives, such as linezolid and, perhaps surprisingly to some, anti-psychotics, such as the phenothiazine family.

  • Owing to the identification of the gene products that are essential to persistence and their new small-molecule inhibitors, which are fast acting and unencumbered by resistance, scientists may yet be able to realize the lofty goals that have been set for new antitubercular therapies.

Abstract

Tuberculosis (TB) claims a life every 10 seconds and global mortality rates are increasing despite the use of chemotherapy. But why have we not progressed towards the eradication of the disease? There is no simple answer, although apathy, politics, poverty and our inability to fight the chronic infection have all contributed. Drug resistance and HIV-1 are also greatly influencing the current TB battle plans, as our understanding of their complicity grows. In this Review, recent efforts to fight TB will be described, specifically focusing on how drug discovery could combat the resistance and persistence that make TB worthy of the moniker 'The Great White Plague'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Overlay of small-molecule inhibitors of InhA.

Similar content being viewed by others

References

  1. Boshoff, H. I. M. & Barry 3rd, C. E. Tuberculosis-metabolism and respiration in the absence of growth. Nature Rev. Microbiol. 3, 70–80 (2005).

    Article  CAS  Google Scholar 

  2. Russell, D. G. Who puts the tubercle in tuberculosis? Nature Rev. Microbiol. 5, 39–47 (2007).

    Article  CAS  Google Scholar 

  3. Stewart, G. R., Roberston, B. D. & Young, D. B. Tuberculosis: a problem with persistence. Nature Rev. Microbiol. 1, 97–105 (2003). Focuses on the biology of persistence in mycobacteria.

    Article  CAS  Google Scholar 

  4. Janin, Y. L. Antituberculosis drugs: ten years of research. Bioorg. Med. Chem. 15, 2479–2513 (2007). Discusses antitubercular small molecules, from early discovery compounds to approved drugs.

    Article  CAS  PubMed  Google Scholar 

  5. Ginsberg, A. M. & Spigelman, M. Challenges in tuberculosis drug research and development. Nature Med. 13, 290–294 (2007). An enlightening discussion of the current hurdles in TB drug discovery.

    Article  CAS  PubMed  Google Scholar 

  6. Williams, K. J. & Duncan, K. Current strategies for identifying and validating targets for new treatment-shortening drugs for TB. Curr. Mol. Med. 7, 297–307 (2007). An informative exposition that focuses on drug-discovery strategies.

    Article  CAS  PubMed  Google Scholar 

  7. Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  Google Scholar 

  8. Cheng, A. C. et al. Structure-based maximal affinity model predicts small-molecule druggability. Nature Biotechnol. 25, 71–75 (2007).

    Article  CAS  Google Scholar 

  9. Boshoff, H. I. M. et al. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism. J. Biol. Chem. 279, 40174–40184 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Andries, K. et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Manjunatha, U. H. et al. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 431–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Camacho, L. R., Ensergueix, D., Perez, E., Gicquel, B. & Guilhot, C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34, 257–267 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Cox, J. S., Chen, B., McNeil, M. & Jacobs, W. R. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Sassetti, C. M., Boyd, D. H. & Rubin, E. J. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl Acad. Sci. USA 2001, 12712–12717 (2001).

    Article  Google Scholar 

  15. Lamichane, G. et al. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 12, 7213–7218 (2003).

    Article  CAS  Google Scholar 

  16. Ehrt, S. et al. Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor. Nucleic Acids Res. 33, e21 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carroll, P., Muttucumaru, D. G. & Parish, T. Use of a tetracycline-inducible system for conditional expression in Mycobacterium tuberculosis and Mycobacterium smegmatis. Appl. Environ. Microbiol. 71, 3077–3084 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blokpoel, M. C. et al. Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Res. 33, e22 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Argyrou, A., Jin, L., Siconilfi-Baez, L., Angeletti, R. H. & Blanchard, J. S. Proteome-wide profiling of isoniazid targets in Mycobacterium tuberculosis. Biochemistry 45, 13947–13953 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Argyrou, A., Vetting, M. W., Aladegbami, B. & Blanchard, J. S. Mycobacterium tuberculosis dihydrofolate reductase is a target for isoniazid. Nature Struct. Mol. Biol. 13, 408–413 (2006).

    Article  CAS  Google Scholar 

  21. Nopponpunth, V., Sirawaraporn, W., Greene, P. J. & Santi, D. V. Cloning and expresion of Mycobacterium tuberculosis and Mycobacterium leprae dihydropteroate synthase in Escherichia coli. J. Bacteriol. 181, 6814–6821 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rengarajan, J. et al. The folate pathway is a target for resistance to the drug para-aminosalicyclic acid (PAS) in mycobacteria. Mol. Microbiol. 53, 275–282 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Vilcheze, C. et al. Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nature Med. 12, 1027–1029 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Lipinski, C. & Hopkins, A. Navigating chemical space for biology and medicine. Nature 432, 855–861 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Nwaka, S. & Hudson, A. Innovative lead discovery strategies for tropical diseases. Nature Rev. Drug Discov. 5, 941–955 (2006).

    Article  CAS  Google Scholar 

  26. Lee, R. E. et al. Combinatorial lead optimization of [1,2]-diamines based on ethambutol as potential antituberculosis preclinical candidates. J. Comb. Chem. 5, 172–187 (2003). Demonstrates a combinatorial chemistry expansion around ethambutol that was paired with a functional-assay approach to produce novel chemical entities that modulate mycobacterial cell-wall biosynthesis, including SQ109.

    Article  CAS  PubMed  Google Scholar 

  27. Johnson, D. E. & Rodgers, A. D. Computational toxicology: heading toward more relevance in drug discovery and development. Curr. Opin. Drug Discov. Devel. 9, 29–37 (2006).

    CAS  PubMed  Google Scholar 

  28. Pearl, G. M., Livingston-Carr, S. & Durham, S. K. Integration of computational analysis as a sentinel tool in toxicological assessments. Curr. Top. Med. Chem. 1, 247–255 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Goldman, R. et al. in Annual Conference on Antimicrobial Resistance (National Foundation for Infectious Diseases, Bethesda, 2006).

    Google Scholar 

  30. Alland, D., Steyn, A. J., Weisbrod, T., Aldrich, K. & Jacobs, W. R. Jr. Characterization of the Mycobacterium tuberculosis iniBAC promoter, a promoter that responds to cell wall biosynthesis inhibition. J. Bacteriol. 182, 1802–1811 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qureshi, N., Sathyamoorthy, N. & Takayama, K. Biosynthesis of C30 to C56 fatty acids by an extract of Mycobacterium tuberculosis H37Ra. J. Bacteriol. 157, 46–52 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rozwarski, D. A., Vilchéze, C., Sugantino, M., Bittman, R. & Sacchettini, J. C. Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD+ and a C16 fatty acyl substrate. J. Biol. Chem. 274, 15582–15589 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Y., Heym, B., Allen, B., Young, D. & Cole, S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358, 591–593 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Muñoz-Elías, E. J. & McKinney, J. D. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nature Med. 11, 638–644 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Sharma, V. et al. Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis. Nature Struct. Biol. 7, 663–668 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. White, E. L. et al. A novel inhibitor of Mycobacterium tuberculosis pantothenate synthetase. J. Biomol. Screen. 12, 100–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Bogatcheva, E. et al. Identification of new diamine scaffolds with activity against Mycobacterium tuberculosis. J. Med. Chem. 49, 3045–3048 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Murillo, A. C. et al. High throughput crystallography of TB drug targets. Infect. Disord. Drug Targets 7, 127–139 (2007). Discusses the use of X-ray crystallography to catalyze TB drug-discovery efforts by the elucidation of the structures of essential M. tuberculosis gene products.

    Article  CAS  PubMed  Google Scholar 

  39. Bajorath, J. Integration of virtual and high-throughput screening. Nature Rev. Drug Discov. 1, 882–894 (2002).

    Article  CAS  Google Scholar 

  40. Shoichet, B. K. Virtual screening of chemical libraries. Nature 432, 862–865 (2004). Provides a good introduction to virtual screening using examples from drug discovery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shoichet, B. K., McGovern, S. L., Wei, B. & Irwin, J. J. Lead discovery using molecular docking. Curr. Opin. Chem. Biol. 6, 439–446 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Manetti, F. et al. Ligand-based virtual screening, parallel solution-phase and microwave-assisted synthesis as tools to identify and synthesize new inhibitors of Mycobacterium tuberculosis. ChemMedChem 1, 973–989 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. García-García, A. et al. Search of chemical scaffolds for novel antituberculosis agents. J. Biomol. Screen. 10, 206–214 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    Article  CAS  Google Scholar 

  45. Agrawal, H., Kumar, A., Bal, N. C., Siddiqi, M. I. & Arora, A. Ligand based virtual screening and biological evaluation of inhibitors of chorismate mutase (Rv1885c) from Mycobacterium tuberculosis H37Rv. Bioorg. Med. Chem. Lett. 17, 3053–3058 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Parish, T. & Stoker, N. G. The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis. Microbiology 148, 3069–3077 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Hediger, M. E. Design, synthesis, and evaluation of aza inhibitors of chorismate mutase. Bioorg. Med. Chem. 15, 4995–5010 (2004).

    Article  CAS  Google Scholar 

  48. Lin, T. W. et al. Structure-based inhibitor design of ACCD5, an essential acyl-CoA carboxylase carboxyltransferase domain of Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 3072–3077 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nature Rev. Drug Discov. 6, 29–40 (2007).

    Article  CAS  Google Scholar 

  50. Dessen, A., Quemard, A., Blanchard, J. S., Jacobs, W. R. Jr & Sacchettini, J. C. Crystal structure and function of the isoniazid target of M. tuberculosis. Science 267, 1638–1641 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Kuo, M. R. et al. Targeting tuberculosis and malaria through inhibition of enoyl reductase. J. Biol. Chem. 278, 20851–20859 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Rozwarski, D. A., Grant, G. A., Barton, D. H. R., Jacobs, W. R. Jr & Sacchettini, J. C. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279, 98–102 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, F. et al. Mechanism of thionamide drug action against tuberculosis and leprosy. J. Exp. Med. 204, 73–78 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sullivan, T. J. et al. High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem. Biol. 1, 43–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Tsukamura, M., Nakamura, E., Yoshii, S. & Amano, H. Therapeutic effect of a new antibacterial substance ofloxacin (DL8280) on pulmonary tuberculosis. Am. Rev. Respir. Dis. 131, 352–356 (1985).

    CAS  PubMed  Google Scholar 

  56. Aubry, A. et al. Novel gyrase mutations in quinolone-resistant and -hypersusceptible clinical isolates of Mycobacterium tuberculosis: functional analysis of mutant enzymes. Antimicrob. Agents Chemother. 50, 104–112 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Veziris, N. et al. Treatment failure in a case of extensively drug-resistant tuberculosis associated with selection of a GyrB mutant causing fluoroquinolone resistance. Eur. J. Clin. Microbiol. Infect. Dis. 26, 423–425 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998). Determined the genome of M. tuberculosis H37Rv.

    Article  CAS  PubMed  Google Scholar 

  59. Takiff, H. E. et al. Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Proc. Natl Acad. Sci. USA 9, 362–366 (1996).

    Article  Google Scholar 

  60. Cynamon, M., Sklaney, M. R. & Shoen, C. Gatifloxacin in combination with rifampicin in a murine tuberculosis model. J. Antimicrob. Chemother. 60, 429–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Spigelman, M. K. New tuberculosis therapeutics: a growing pipeline. J. Infect. Dis. 196, S28–S34 (2007).

    Article  PubMed  Google Scholar 

  62. Cricchio, R., Arioli, V. & Lancini, G. C. Hydrazones of 3-formylrifamycin SV. I — hydrazones with N-amino-N′-substituted piperazines: synthesis, antibacterial activity and other biological properties. Farmaco [Sci] 30, 605–619 (1975).

    CAS  Google Scholar 

  63. Arioli, V. et al. Antibacterial activity of DL 473, a new semisynthetic rifamycin derivative. J. Antibiot. (Tokyo) 34, 1026–1032 (1981).

    Article  CAS  Google Scholar 

  64. Bemer-Melchior, P., Bryskier, A. & Drugeon, H. B. Comparison of the in vitro activities of rifapentine and rifampicin against Mycobacterium tuberculosis. J. Antimicrob. Chemother. 46, 571–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Dickinson, J. M. & Mitchison, D. A. In vitro properties of rifapentine (MDL473) relevant to its use in intermittent chemotherapy of tuberculosis. Tubercle 68, 113–118 (1987).

    Article  CAS  PubMed  Google Scholar 

  66. Burman, W. J., Gallicano, K. & Peloquin, C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin. Pharmacokinet. 40, 327–341 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Yamane, T. et al. Synthesis and biological activity of 3′-hydroxy-5′-aminobenzoxazinorifamycin derivatives. Chem. Pharm. Bull. (Tokyo) 41, 148–155 (1993).

    Article  CAS  Google Scholar 

  68. Fuji, K., Saito, H., Tomioka, H., Mae, T. & Hosoe, K. Mechanism of action of antimycobacterial activity of the new benzoxazinorifamycin KRM-1648. Antimicrob. Agents Chemother. 39, 1489–1492 (1995).

    Article  Google Scholar 

  69. Hirata, T. et al. In vitro and in vivo activities of the benzoxazinorifamycin KRM-1648 against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 39, 2295–2303 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Klemens, S. P. & Cynamon, M. Activity of KRM-1648 in combination with isoniazid against Mycobacterium tuberculosis in a murine model. Antimicrob. Agents Chemother. 40, 298–301 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dietze, R. et al. Safety and bactericidal activity of rifalazil in patients with pulmonary tuberculosis. Antimicrob. Agents Chemother. 45, 1972–1976 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mae, T. et al. Effect of a new rifamycin derivative, rifalazil, on liver microsomal enzyme induction in rat and dog. Xenobiotica 28, 759–766 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Burman, W. J. & Jones, B. E. Treatment of HIV-related tuberculosis in the era of effective antiretroviral therapy. Am. J. Respir. Crit. Care Med. 164, 7–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Report No. TDR/PRD/TB/03.1W (World Health Organization, Geneva, 2003).

  75. Shepherd, R. G. & Wilkinson, R. G. Antituberculous agents. II. N,N′-diisopropylethylenediamine and analogs. J. Med. Pharm. Chem. 5, 823–835 (1962).

    Article  CAS  Google Scholar 

  76. Wilkinson, R. G., Cantrall, M. B. & Shepherd, R. G. Antituberculous agents. III. (+)-2,2-(ethylenediimino)-di-1-butanol and some analogs. J. Med. Pharm. Chem. 5, 835–845 (1962).

    Article  CAS  Google Scholar 

  77. Jia, L. et al. Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br. J. Pharmacol. 144, 80–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Koul, A. et al. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nature Chem. Biol. 3, 323–324 (2007).

    Article  CAS  Google Scholar 

  79. Petrella, S. et al. Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria. Antimicrob. Agents Chemother. 50, 2853–2856 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lounis, N. et al. Combinations of R207910 with drugs used to treat multidrug-resistant tuberculosis have the potential to shorten treatment duration. Antimicrob. Agents Chemother. 50, 3543–3547 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Deidda, D. et al. Bactericidal activities of the pyrrole derivative BM212 against multidrug-resistant and intramacrophagic Mycobacterium tuberculosis strains. Antimicrob. Agents Chemother. 42, 3035–3037 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Arora, S. K., Sinha, N., Sinha, R. & Upadhyaya, R. S.U.S. Patent Application. US 2005/0256128 A1 (2005).

  83. Casenghi, M. Development of new drugs for TB chemotherapy. Campaign for access to essential medicines [online], (2006).

  84. Edwards, D. I. Mechanism of antimicrobial action of metronidazole. J. Antimicrob. Chemother. 5, 499–502 (1979).

    Article  CAS  PubMed  Google Scholar 

  85. Wayne, L. G. & Sohaskey, C. D. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 55, 139–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Wayne, L. G. & Sramek, H. A. Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 38, 2054–2058 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Brooks, J. V., Furney, S. K. & Orme, I. M. Metronidazole therapy in mice infected with tuberculosis. Antimicrob. Agents Chemother. 43, 1285–1288 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ashtekar, D. R. et al. In vitro and in vivo activities of the nitroimidazole CGI 17341 against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 37, 183–186 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nagrajan, K., Shankar, R. G., Rajappa, S., Shenoy, S. J. & Costa-Pereira, R. Nitroimidazoles XXI 2,3-dihydro-6-nitroimidazo [2,1-b] oxazoles with antitubercular activity. Eur. J. Med. Chem. 24, 631–633 (1989).

    Article  Google Scholar 

  90. Stover, C. K. et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405, 962–966 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Tyagi, S. et al. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis. Antimicrob. Agents Chemother. 49, 2289–2293 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nuermberger, E. et al. Combination chemotherapy with the nitroimidazopyran PA-824 and first-line drugs in a murine model of tuberculosis. Antimicrob. Agents Chemother. 50, 2621–2625 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Matsumoto, M. et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med. 3, 2131–2144 (2006).

    Article  CAS  Google Scholar 

  94. Sasaki, H. et al. Synthesis and antituberculosis activity of a novel series of optically active 6-nitro-2,3-dihydroimidazo[2,1-b]oxazoles. J. Med. Chem. 49, 7854–7860 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Raether, W. & Hänel, H. Nitroheterocyclic drugs with broad spectrum activity. Parasitol. Res. 90, S19–S39 (2003).

    PubMed  Google Scholar 

  96. Brickner, S. J. et al. Synthesis and antibacterial activity of U-100592 and U-100766, two oxazolidinone antibacterial agents for the potential treatment of multidrug-resistant gram-positive bacterial infections. J. Med. Chem. 39, 673–679 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Zurenko, G. E. et al. In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob. Agents Chemother. 40, 839–845 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Colca, J. R. et al. Cross-linking in the living cell locates the site of action of oxazolidinone antibiotics. J. Biol. Chem. 278, 21972–21979 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Fortún, J. et al. Linezolid for the treatment of multidrug-resistant tuberculosis. J. Antimicrob. Chemother. 56, 180–185 (2005).

    Article  PubMed  Google Scholar 

  100. Ntziora, F. & Falagas, M. E. Linezolid for the treatment of patients with atypical mycobacterial infection: a systematic review. Int. J. Tuberc. Lung Dis. 11, 606–611 (2007).

    CAS  PubMed  Google Scholar 

  101. Park, I. N. et al. Efficacy and tolerability of daily-half dose linezolid in patients with intractable multidrug-resistant tuberculosis. J. Antimicrob. Chemother. 58, 701–704 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. von der Lippe, B., Sandven, P. & Brubakk, O. Efficacy and safety of linezolid in multidrug resistant tuberculosis (MDR-TB) — a report of ten cases. J. Infect. 52, 92–96 (2006).

    Article  PubMed  Google Scholar 

  103. Sood, R., Rao, M., Singhal, S. & Rattan, A. Activity of RBx 7644 and RBx 8700, new investigational oxazolidinones, against Mycobacterium tuberculosis infected murine macrophages. Int. J. Antimicrob. Agents 25, 464–468 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Fisher, J. F., Meroueh, S. O. & Mobashery, S. Bacterial resistance to β-lactam antibiotics: compelling opportunism, compelling opportunity. Chem. Rev. 105, 395–424 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Flores, A. R., Parsons, L. M. & Pavelka, M. S. Jr. Genetic analysis of the β-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to β-lactam antibiotics. Microbiology 151, 521–532 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Wang, F., Cassidy, C. & Sacchettini, J. C. Crystal structure and activity studies of the Mycobacterium tuberculosis β-lactamase reveal its critical role in resistance to β-lactam antibiotics. Antimicrob. Agents Chemother. 50, 2762–2771 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Flores, A. R., Parsons, L. M. & Pavelka, M. S. Jr. Characterization of novel Mycobacterium tuberculosis and Mycobacterium smegmatis mutants hypersusceptible to β-lactam antibiotics. J. Bacteriol. 187, 1892–1900 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chambers, H. F. et al. Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis? Antimicrob. Agents Chemother. 39, 2620–2624 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chambers, H. F., Turner, J., Schecter, G. F., Kawamura, M. & Hopewell, P. C. Imipenem for treatment of tuberculosis in mice and humans. Antimicrob. Agents Chemother. 49, 2816–2821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rodloff, A. C., Goldstein, E. J. C. & Torres, A. Two decades of imipenem therapy. J. Antimicrob. Chemother. 58, 916–929 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Chambers, H. F., Kocagoz, S., Sipit, T., Turner, J. & Hopewell, P. C. Activity of amoxicillin/clavulanate in patients with tuberculosis. Clin. Infect. Dis. 26, 874–877 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Sauvage, E. et al. Crystal structure of the Mycobacterium fortuitum class A β-lactamase: structural basis for broad substrate specificity. Antimicrob. Agents Chemother. 50, 2516–2521 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lopez-Munoz, F. et al. History of the discovery and clinical introduction of chlorpromazine. Ann. Clin. Psychiatry 17, 113–135 (2006).

    Article  Google Scholar 

  114. Amaral, L., Kristiansen, J. E., Viveiros, M. & Atouguia, J. Activity of phenothiazines against antibiotic-resistant Mycobacterium tuberculosis: a review supporting further studies that may elucidate the potential use of thioridazine as anti-tuberculosis therapy. J. Antimicrob. Chemother. 47, 505–511 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Hollister, L. E., Eikenberry, D. T. & Raffel, S. Chlorpromazine in nonpsychotic patients with pulmonary tuberculosis. Am. Rev. Respir. Dis. 81, 562–566 (1960).

    CAS  PubMed  Google Scholar 

  116. Amaral, L., Kristiansen, J. E., Abebe, L. S. & Millet, W. Inhibition of the respiration of multi-drug resistant clinical isolates of Mycobacterium tuberculosis by thioridazine: potential use for initial therapy of freshly diagnosed tuberculosis. J. Antimicrob. Chemother. 38, 1049–1053 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Ratnakar, P. & Murthy, P. S. Antitubercular activity of trifluoperazine, a calmodulin antagonist. FEMS Microbiol. Lett. 1, 73–76 (1992).

    Article  Google Scholar 

  118. Reddy, M. V., Nadadhur, G. & Gangadharam, P. R. In-vitro and intracellular antimycobacterial activity of trifluoperazine. J. Antimicrob. Chemother. 37, 196–197 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Crowle, A. J., Douvas, G. S. & May, M. H. Chlorpromazine: a drug potentially useful for treating mycobacterial infections. Chemotherapy 38, 410–419 (1992).

    Article  CAS  PubMed  Google Scholar 

  120. Ordway, D. et al. Clinical concentrations of thioridazine kill intracellular multidrug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 47, 917–922 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Weinstein, E. A. et al. Inhibitors of type II NADH: menaquinone oxidoreductase represent a class of antitubercular drugs. Proc. Natl Acad. Sci. USA 102, 4548–4553 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xie, Z., Siddiqi, N. & Rubin, E. J. Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. 49, 4778–4780 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bate, A. B. et al. Synthesis and antitubercular activity of quaternized promazine and promethazine derivatives. Bioorg. Med. Chem. Lett. 17, 1346–1348 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Madrid, P. B., Polgar, W. E., Toll, L. & Tanga, M. J. Synthesis and antitubercular activity of phenothiazines with reduced binding to dopamine and serotonin receptors. Bioorg. Med. Chem. Lett. 17, 3014–3017 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Schatz, A., Bugie, E. & Waksman, S. A. Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Proc. Soc. Exp. Biol. Med. 55, 66–69 (1944).

    Article  CAS  Google Scholar 

  126. Schatz, A., Bugie, E. & Waksman, S. A. Effect of streptomycin and other antibiotic substances upon Mycobacterium tuberculosis and related organisms. Proc. Soc. Exp. Biol. Med. 57, 244–248 (1944).

    Article  CAS  Google Scholar 

  127. Kingston, W. Streptomycin, Schatz v. Waksman, and the balance of credit for discovery. J. Hist. Med. Allied Sci. 60, 218–220 (2005).

    Article  Google Scholar 

  128. Pettersen, E. F. et al. UCSF chimera — a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Wright, D. H., Brown, G. H., Peterson, M. L. & Rotschafer, J. C. Application of fluoroquinolone pharmacodynamics. J. Antimicrob. Chemother. 46, 669–683 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. McIlleron, H. et al. Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob. Agents. Chemother. 50, 1170–1177 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Berning, S. E. & Peloquin, C. A. in Antimicrobial Chemotherapy (eds Yu, V. L., Merigan, T. C., Barriere, S. & White, N. J.) 663–668 (Williams and Wilkins, Maryland, 1998).

    Google Scholar 

  132. Doluisio, J. T., Dittert, L. W. & LaPiana, J. C. Pharmacokinetics of kanamycin following intramuscular administration. J. Pharmacokinet. Biopharm. 1, 253–265 (1973).

    Article  CAS  Google Scholar 

  133. Adamis, G. et al. Pharmacokinetic interactions of ceftazidime, imipenem and aztreonam with amikacin in healthy volunteers. Int. J. Antimicrob. Agents 23, 144–149 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Spigelman, R. Goldman, J. Garcia, K. Andries, C. Dukes Hamilton, J. Guilemont, J. Johnson and A. Sternlicht for insightful conversations and, in some cases, providing unpublished results. The authors are supported by a grant from the National Institutes of Health (PO1A1068135) and the Robert A. Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Sacchettini.

Related links

Related links

DATABASES

Entrez Genome Project

Chlamydia pneumoniae

Mycobacterium smegmatis

Mycobacterium tuberculosis

Saccharomyces cerevisiae

Staphylococcus aureus

FURTHER INFORMATION

James C. Sacchettini's homepage

ClinicalTrials.gov

DrugBank

TB Alliance

The Merck Manuals Medical Library

Tuberculosis Antimicrobial Acquisition and Coordinating Facility

Glossary

Pharmacokinetic profile

A quantitative description of the fate of a drug from the moment the treated subject is dosed with the compound to the moment when it (and/or its derivatives) is expelled from the subject.

Pharmacophore

The chemical functional group (or groups) that is present on a molecule and that enables its biological activity.

Chemotype

A chemical functional group or classification of a specific array of functional groups.

Lipinski's rules

A set of delimited physiochemical properties described by C. A. Lipinski that best fit a studied subset of drugs. In general, compounds that adhere to these guidelines are said to be drug-like.

Shikimate pathway

A series of biochemical reactions in plants and microorganisms that are involved in the biosynthesis of aromatic amino acids.

Lead optimization

The process by which a promising small-molecule entity is structurally modified to obtain drug-like pharmacokinetic, pharmacodynamic and safety profiles.

Efflux pump

An active transport system for the removal of toxic molecules, such as antibiotics, from cells.

Structure–activity relationship

(SAR). The relationship between the chemical structure of a compound and its biological or pharmacological activity. This type of relationship can be assessed by considering a series of molecules, each with a slightly different structure, and then noting the effect on the biological activity that is associated with each structural variation.

Fast-track status

The FDA status that is reserved for products that demonstrate the potential to treat a serious or life-threatening condition.

F0 subunit of atp synthase

The transmembrane portion of the enzyme complex that is involved in the biosynthesis of ATP, which has a role in the passage of protons through the membrane.

Ames mutagenicity test

A sensitive biological method for measuring the mutagenic potency of chemical substances.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sacchettini, J., Rubin, E. & Freundlich, J. Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis. Nat Rev Microbiol 6, 41–52 (2008). https://doi.org/10.1038/nrmicro1816

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1816

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing