Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antimalarial drug discovery: progress and approaches

Abstract

Recent antimalarial drug discovery has been a race to produce new medicines that overcome emerging drug resistance, whilst considering safety and improving dosing convenience. Discovery efforts have yielded a variety of new molecules, many with novel modes of action, and the most advanced are in late-stage clinical development. These discoveries have led to a deeper understanding of how antimalarial drugs act, the identification of a new generation of drug targets, and multiple structure-based chemistry initiatives. The limited pool of funding means it is vital to prioritize new drug candidates. They should exhibit high potency, a low propensity for resistance, a pharmacokinetic profile that favours infrequent dosing, low cost, preclinical results that demonstrate safety and tolerability in women and infants, and preferably the ability to block Plasmodium transmission to Anopheles mosquito vectors. In this Review, we describe the approaches that have been successful, progress in preclinical and clinical development, and existing challenges. We illustrate how antimalarial drug discovery can serve as a model for drug discovery in diseases of poverty.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Malaria therapies in the context of the Plasmodium parasite lifecycle.
Fig. 2: Antimalarial drug discovery and development pipeline.

Similar content being viewed by others

References

  1. Carter, R. & Mendis, K. N. Evolutionary and historical aspects of the burden of malaria. Clin. Microbiol. Rev. 15, 564–594 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ashley, E. A., Pyae Phyo, A. & Woodrow, C. J. Malaria. Lancet 391, 1608–1621 (2018).

    Article  PubMed  Google Scholar 

  3. Lal, A. A., Rajvanshi, H., Jayswar, H., Das, A. & Bharti, P. K. Malaria elimination: using past and present experience to make malaria-free India by 2030. J. Vector Borne Dis. 56, 60–65 (2019).

    Article  PubMed  Google Scholar 

  4. World Health Organization. World Malaria Report https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 (2022).

  5. Chandramohan, D. et al. Seasonal malaria vaccination with or without seasonal malaria chemoprevention. N. Engl. J. Med. 385, 1005–1017 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Sinnis, P. & Fidock, D. A. The RTS,S vaccine-a chance to regain the upper hand against malaria? Cell 185, 750–754 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Datoo, M. S. et al. Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years’ follow-up in children in Burkina Faso: a phase 1/2b randomised controlled trial. Lancet Infect. Dis. 22, 1728–1736 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Greenwood, B. et al. Combining malaria vaccination with chemoprevention: a promising new approach to malaria control. Malar. J. 20, 361 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Phillips, M. A. et al. Malaria. Nat. Rev. Dis. Primers 3, 17050 (2017).

    Article  PubMed  Google Scholar 

  10. Wicht, K. J., Mok, S. & Fidock, D. A. Molecular mechanisms of drug resistance in Plasmodium falciparum malaria. Annu. Rev. Microbiol. 74, 431–454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rasmussen, C., Alonso, P. & Ringwald, P. Current and emerging strategies to combat antimalarial resistance. Expert Rev. Anti Infect. Ther. 20, 353–372 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Achan, J. et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar. J. 10, 144 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. White, N. J. Qinghaosu (artemisinin): the price of success. Science 320, 330–334 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Plowe, C. V. Malaria chemoprevention and drug resistance: a review of the literature and policy implications. Malar. J. 21, 104 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. van der Pluijm, R. W. et al. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. Lancet Infect. Dis. 19, 952–961 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dhorda, M., Amaratunga, C. & Dondorp, A. M. Artemisinin and multidrug-resistant Plasmodium falciparum — a threat for malaria control and elimination. Curr. Opin. Infect. Dis. 34, 432–439 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Uwimana, A. et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat. Med. 26, 1602–1608 (2020). Reported the identification of artemisinin partial resistance emerging in African parasites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uwimana, A. et al. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: an open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infect. Dis. 21, 1120–1128 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Balikagala, B. et al. Evidence of artemisinin-resistant malaria in Africa. N. Engl. J. Med. 385, 1163–1171 (2021). Reports clinical evidence that mutant Kelch13 alleles emerging independently in Uganda were associated with prolonged parasite clearance half-lives in patients with P. falciparum infection treated with artesunate.

    Article  CAS  PubMed  Google Scholar 

  20. Straimer, J., Gandhi, P., Renner, K. C. & Schmitt, E. K. High prevalence of Plasmodium falciparum K13 mutations in Rwanda is associated with slow parasite clearance after treatment with artemether-lumefantrine. J. Infect. Dis. 225, 1411–1414 (2021).

    Article  PubMed Central  Google Scholar 

  21. Tumwebaze, P. K. et al. Decreased susceptibility of Plasmodium falciparum to both dihydroartemisinin and lumefantrine in northern Uganda. Nat. Commun. 13, 6353 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ariey, F. et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505, 50–55 (2014).

    Article  PubMed  Google Scholar 

  23. Ashley, E. A. et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 371, 411–423 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Siddiqui, F. A., Liang, X. & Cui, L. Plasmodium falciparum resistance to ACTs: emergence, mechanisms, and outlook. Int. J. Parasitol. Drugs Drug Resist. 16, 102–118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Straimer, J. et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347, 428–431 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Siddiqui, F. A. et al. Plasmodium falciparum falcipain-2a polymorphisms in Southeast Asia and their association with artemisinin resistance. J. Infect. Dis. 218, 434–442 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang, T. et al. Decreased K13 abundance reduces hemoglobin catabolism and proteotoxic stress, underpinning artemisinin resistance. Cell Rep. 29, 2917–2928 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Birnbaum, J. et al. A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science 367, 51–59 (2020). This study identified the role of proteins (including K13) in ART resistance and their functional association with reduced haemoglobin endocytosis, a mechanism important for ART activation.

    Article  CAS  PubMed  Google Scholar 

  29. Posner, G. H. et al. Mechanism-based design, synthesis, and in vitro antimalarial testing of new 4-methylated trioxanes structurally related to artemisinin: the importance of a carbon-centered radical for antimalarial activity. J. Med. Chem. 37, 1256–1258 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Mok, S. et al. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science 347, 431–435 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Hott, A. et al. Artemisinin-resistant Plasmodium falciparum parasites exhibit altered patterns of development in infected erythrocytes. Antimicrob. Agents Chemother. 59, 3156–3167 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xie, S. C., Ralph, S. A. & Tilley, L. K13, the cytostome, and artemisinin resistance. Trends Parasitol. 36, 533–544 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Reyser, T. et al. Identification of compounds active against quiescent artemisinin-resistant Plasmodium falciparum parasites via the quiescent-stage survival assay (QSA). J. Antimicrob. Chemother. 75, 2826–2834 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Connelly, S. V. et al. Restructured mitochondrial-nuclear interaction in Plasmodium falciparum dormancy and persister survival after artemisinin exposure. mBio 12, e0075321 (2021).

    Article  PubMed  Google Scholar 

  35. Mok, S. et al. Artemisinin-resistant K13 mutations rewire Plasmodium falciparum’s intra-erythrocytic metabolic program to enhance survival. Nat. Commun. 12, 530 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Imwong, M. et al. Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: an observational study. Lancet Infect. Dis. 20, 1470–1480 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stokes, B. H. et al. Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness. eLife 10, e66277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stokes, B. H., Ward, K. E. & Fidock, D. A. Evidence of artemisinin-resistant malaria in Africa. N. Engl. J. Med. 386, 1385–1386 (2022). Laboratory P. falciparum Dd2 parasites edited with kelch13 mutations A675V or C469Y (observed in clinical isolates from Africa) alone showed only marginally reduced susceptibility to dihydroartemisinin, suggesting that high-level resistance to treatment with an artemisinin derivative must include additional mutations.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Demas, A. R. et al. Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility. Proc. Natl Acad. Sci. USA 115, 12799–12804 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sharma, A. I. et al. Genetic background and PfKelch13 affect artemisinin susceptibility of PfCoronin mutants in Plasmodium falciparum. PLoS Genet. 16, e1009266 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Henrici, R. C., van Schalkwyk, D. A. & Sutherland, C. J. Modification of pfap2mu and pfubp1 markedly reduces ring-stage susceptibility of Plasmodium falciparum to artemisinin in vitro. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.01542-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Amambua-Ngwa, A. et al. Major subpopulations of Plasmodium falciparum in sub-Saharan Africa. Science 365, 813–816 (2019). Important analysis of genetic population of P. falciparum clinical isolate samples in African continent revealing shared genomic haplotypes associated with antimalarial resistance.

    Article  CAS  PubMed  Google Scholar 

  43. Masserey, T. et al. The influence of biological, epidemiological, and treatment factors on the establishment and spread of drug-resistant Plasmodium falciparum. eLife https://doi.org/10.7554/eLife.77634 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Imwong, M. et al. Evolution of multidrug resistance in Plasmodium falciparum: a longitudinal study of genetic resistance markers in the Greater Mekong subregion. Antimicrob. Agents Chemother. 65, e0112121 (2021).

    Article  PubMed  Google Scholar 

  45. Amato, R. et al. Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study. Lancet Infect. Dis. 17, 164–173 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Witkowski, B. et al. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. Lancet Infect. Dis. 17, 174–183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chugh, M. et al. Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc. Natl Acad. Sci. USA 110, 5392–5397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rathore, I. et al. Activation mechanism of plasmepsins, pepsin-like aspartic proteases from Plasmodium, follows a unique trans-activation pathway. FEBS J. 288, 678–698 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Bopp, S. et al. Plasmepsin II-III copy number accounts for bimodal piperaquine resistance among Cambodian Plasmodium falciparum. Nat. Commun. 9, 1769 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dhingra, S. K. et al. A variant PfCRT isoform can contribute to Plasmodium falciparum resistance to the first-line partner drug piperaquine. mBio 8, e00303-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ross, L. S. et al. Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine. Nat. Commun. 9, 3314 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dhingra, S. K., Small-Saunders, J. L., Ménard, D. & Fidock, D. A. Plasmodium falciparum resistance to piperaquine driven by PfCRT. Lancet Infect. Dis. 19, 1168–1169 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hamilton, W. L. et al. Evolution and expansion of multidrug-resistant malaria in southeast Asia: a genomic epidemiology study. Lancet Infect. Dis. 19, 943–951 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim, J. et al. Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Nature 576, 315–320 (2019). The emergence of mutations in the chloroquine resistance transporter resulted in a worldwide crisis and an urgent search for new medicines. Here, the structure of PfCRT isoforms resistant to chloroquine was solved, demonstrating how these mutations confer resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Agrawal, S. et al. Association of a novel mutation in the Plasmodium falciparum chloroquine resistance transporter with decreased piperaquine sensitivity. J. Infect. Dis. 216, 468–476 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Small-Saunders, J. L. et al. Evidence for the early emergence of piperaquine-resistant Plasmodium falciparum malaria and modeling strategies to mitigate resistance. PLoS Pathog. 18, e1010278 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van der Pluijm, R. W. et al. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. Lancet 395, 1345–1360 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. van der Pluijm, R. W., Amaratunga, C., Dhorda, M. & Dondorp, A. M. Triple artemisinin-based combination therapies for malaria — a new paradigm? Trends Parasitol. 37, 15–24 (2021).

    Article  PubMed  Google Scholar 

  59. Boni, M. F., White, N. J. & Baird, J. K. The community as the patient in malaria-endemic areas: preempting drug resistance with multiple first-line therapies. PLoS Med. 13, e1001984 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Marwa, K. et al. Therapeutic efficacy of artemether-lumefantrine, artesunate-amodiaquine and dihydroartemisinin-piperaquine in the treatment of uncomplicated Plasmodium falciparum malaria in sub-Saharan Africa: a systematic review and meta-analysis. PLoS ONE 17, e0264339 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chotsiri, P. et al. Piperaquine pharmacokinetics during intermittent preventive treatment for malaria in pregnancy. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.01150-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Qiu, D. et al. A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin. Nat. Commun. 13, 5746 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schmitt, E. K. et al. Efficacy of cipargamin (KAE609) in a randomized, phase II dose-escalation study in adults in sub-Saharan Africa with uncomplicated Plasmodium falciparum malaria. Clin. Infect. Dis. 74, 1831–1839 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Duffey, M. et al. Assessing risks of Plasmodium falciparum resistance to select next-generation antimalarials. Trends Parasitol. 37, 709–721 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tse, E. G., Korsik, M. & Todd, M. H. The past, present and future of anti-malarial medicines. Malar. J. 18, 93 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Guantai, E. & Chibale, K. How can natural products serve as a viable source of lead compounds for the development of new/novel anti-malarials? Malar. J. 10, S2 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Plouffe, D. et al. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc. Natl Acad. Sci. USA 105, 9059–9064 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guiguemde, W. A. et al. Chemical genetics of Plasmodium falciparum. Nature 465, 311–315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Miguel-Blanco, C. et al. Hundreds of dual-stage antimalarial molecules discovered by a functional gametocyte screen. Nat. Commun. 8, 15160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gamo, F. J. et al. Thousands of chemical starting points for antimalarial lead identification. Nature 465, 305–310 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Hovlid, M. L. & Winzeler, E. A. Phenotypic screens in antimalarial drug discovery. Trends Parasitol. 32, 697–707 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Delves, M. J. et al. A high throughput screen for next-generation leads targeting malaria parasite transmission. Nat. Commun. 9, 3805 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Antonova-Koch, Y. et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science https://doi.org/10.1126/science.aat9446 (2018). A significant example of one of the first screening campaigns against the parasite liver stage that revealed novel scaffolds and compounds with previously unidentified mechanisms of action.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Abraham, M. et al. Probing the open global health chemical diversity library for multistage-active starting points for next-generation antimalarials. ACS Infect. Dis. https://doi.org/10.1021/acsinfecdis.9b00482 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Guiguemde, W. A. et al. Global phenotypic screening for antimalarials. Chem. Biol. 19, 116–129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xie, S. C. et al. Design of proteasome inhibitors with oral efficacy in vivo against Plasmodium falciparum and selectivity over the human proteasome. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2107213118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Favuzza, P. et al. Dual plasmepsin-targeting antimalarial agents disrupt multiple stages of the malaria parasite life cycle. Cell Host Microbe 27, 642–658 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Forte, B. et al. Prioritization of molecular targets for antimalarial drug discovery. ACS Infect. Dis. 7, 2764–2776 (2021). Describes the most important criteria for selecting targets for antimalarial drug discovery and analyses several drug targets in the MalDA pipeline as well as strategies for identifying additional drug targets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chughlay, M. F. et al. Chemoprotective antimalarial activity of P218 against Plasmodium falciparum: a randomized, placebo-controlled volunteer infection study. Am. J. Trop. Med. Hyg. 104, 1348–1358 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Baldwin, J. et al. High-throughput screening for potent and selective inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. J. Biol. Chem. 280, 21847–21853 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Phillips, M. A. et al. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci. Transl Med. 7, 296ra111 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Llanos-Cuentas, A. et al. Antimalarial activity of single-dose DSM265, a novel Plasmodium dihydroorotate dehydrogenase inhibitor, in patients with uncomplicated Plasmodium falciparum or Plasmodium vivax malaria infection: a proof-of-concept, open-label, phase 2a study. Lancet Infect. Dis. 18, 874–883 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Agarwal, A. et al. Discovery of a selective, safe and novel anti-malarial compound with activity against chloroquine resistant strain of Plasmodium falciparum. Sci. Rep. 5, 13838 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pavadai, E. et al. Identification of new human malaria parasite Plasmodium falciparum dihydroorotate dehydrogenase inhibitors by pharmacophore and structure-based virtual screening. J. Chem. Inf. Model. 56, 548–562 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Uddin, A. et al. Target-based virtual screening of natural compounds identifies a potent antimalarial with selective falcipain-2 inhibitory activity. Front. Pharmacol. 13, 850176 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dascombe, M. J. et al. Mapping antimalarial pharmacophores as a useful tool for the rapid discovery of drugs effective in vivo: design, construction, characterization, and pharmacology of metaquine. J. Med. Chem. 48, 5423–5436 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. de Sousa, A. C. C., Combrinck, J. M., Maepa, K. & Egan, T. J. Virtual screening as a tool to discover new beta-haematin inhibitors with activity against malaria parasites. Sci. Rep. 10, 3374 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ruggeri, C. et al. Identification and validation of a potent dual inhibitor of the P. falciparum M1 and M17 aminopeptidases using virtual screening. PLoS ONE 10, e0138957 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Godinez, W. J. et al. Design of potent antimalarials with generative chemistry. Nat. Mach. Intell. 4, 180–186 (2022).

    Article  Google Scholar 

  90. Yang, T. et al. MalDA, accelerating malaria drug discovery. Trends Parasitol. 37, 493–507 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Summers, R. L. et al. Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention. Cell Chem. Biol. 29, 191–201 (2022). Reports P. falciparum acetyl-coenzyme A synthase as an essential protein for parasite viability associated with histone acetylation and shows it can be inhibited by small molecules (MMV019721 and MMV084978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schalkwijk, J. et al. Antimalarial pantothenamide metabolites target acetyl-coenzyme A biosynthesis in Plasmodium falciparumSci. Transl Med. 11, eaas9917 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Paquet, T. et al. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci. Transl Med. 9, eaad9735 (2017). Describes the development of MMV390048, the first candidate drug discovered and developed entirely in Africa, the first antimalarial kinase inhibitor tested in humans, and the first antimalarial with a phase I trial performed in Africa.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Vanaerschot, M. et al. Inhibition of resistance-refractory P. falciparum kinase PKG delivers prophylactic, blood stage, and transmission-blocking antiplasmodial activity. Cell Chem. Biol. 27, 806–816.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dziekan, J. M. et al. Cellular thermal shift assay for the identification of drug-target interactions in the Plasmodium falciparum proteome. Nat. Protoc. 15, 1881–1921 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Begolo, D., Erben, E. & Clayton, C. Drug target identification using a trypanosome overexpression library. Antimicrob. Agents Chemother. 58, 6260–6264 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Melief, E. et al. Construction of an overexpression library for Mycobacterium tuberculosis. Biol. Methods Protoc. 3, bpy009 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Allman, E. L., Painter, H. J., Samra, J., Carrasquilla, M. & Llinás, M. Metabolomic profiling of the malaria box reveals antimalarial target pathways. Antimicrob. Agents Chemother. 60, 6635–6649 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ganesan, S. M., Falla, A., Goldfless, S. J., Nasamu, A. S. & Niles, J. C. Synthetic RNA-protein modules integrated with native translation mechanisms to control gene expression in malaria parasites. Nat. Commun. 7, 10727 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hoepfner, D. et al. Selective and specific inhibition of the Plasmodium falciparum lysyl-tRNA synthetase by the fungal secondary metabolite cladosporin. Cell Host Microbe 11, 654–663 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Baragana, B. et al. Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proc. Natl Acad. Sci. USA 116, 7015–7020 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kato, N. et al. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature 538, 344–349 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tye, M. A. et al. Elucidating the path to Plasmodium prolyl-tRNA synthetase inhibitors that overcome halofuginone-resistance. Nat. Commun. 13, 4976 (2022). Reports the development of an aminoacyl tRNA synthetase biochemical assay based on TR-FRET and the design of P. falciparum prolyl-tRNA synthetase high-affinity inhibitors that can simultaneously engage all three substrate-binding pockets of the enzyme.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sonoiki, E. et al. Antimalarial benzoxaboroles target Plasmodium falciparum Leucyl-tRNA synthetase. Antimicrob. Agents Chemother. 60, 4886–4895 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xie, S. C. et al. Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy. Science 376, 1074–1079 (2022). Reports a novel biochemical feature of P. falciparum aminoacyl tRNA synthetases and identifies and characterizes a potent inhibitor with activity across the parasite lifecycle that acts via reaction hijacking.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Istvan, E. S. et al. Cytoplasmic isoleucyl tRNA synthetase as an attractive multistage antimalarial drug target. Sci. Transl Med. 15, eadc9249 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sharma, M. et al. Structural basis of malaria parasite phenylalanine tRNA-synthetase inhibition by bicyclic azetidines. Nat. Commun. 12, 343 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jain, V. et al. Structure of prolyl-tRNA synthetase-halofuginone complex provides basis for development of drugs against malaria and toxoplasmosis. Structure 23, 819–829 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Ndagi, U., Kumalo, H. M. & Mhlongo, N. N. A consequence of drug targeting of aminoacyl-tRNA synthetases in Mycobacterium tuberculosis. Chem. Biol. Drug Des. 98, 421–434 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Jain, V. et al. Targeting prolyl-tRNA synthetase to accelerate drug discovery against malaria, leishmaniasis, toxoplasmosis, cryptosporidiosis, and coccidiosis. Structure 25, 1495–1505.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Tandon, S. et al. Deciphering the interaction of benzoxaborole inhibitor AN2690 with connective polypeptide 1 (CP1) editing domain of Leishmania donovani leucyl-tRNA synthetase. J. Biosci. 45, 63 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Mishra, S. et al. Conformational heterogeneity in apo and drug-bound structures of Toxoplasma gondii prolyl-tRNA synthetase. Acta Crystallogr. F. Struct. Biol. Commun. 75, 714–724 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Radke, J. B. et al. Bicyclic azetidines target acute and chronic stages of Toxoplasma gondii by inhibiting parasite phenylalanyl t-RNA synthetase. Nat. Commun. 13, 459 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Alam, M. M. et al. Validation of the protein kinase PfCLK3 as a multistage cross-species malarial drug target. Science https://doi.org/10.1126/science.aau1682 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ducati, R. G. et al. Genetic resistance to purine nucleoside phosphorylase inhibition in Plasmodium falciparum. Proc. Natl Acad. Sci. USA 115, 2114–2119 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xie, S. C. et al. Target validation and identification of novel boronate inhibitors of the Plasmodium falciparum proteasome. J. Med. Chem. 61, 10053–10066 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Stokes, B. H. et al. Covalent Plasmodium falciparum-selective proteasome inhibitors exhibit a low propensity for generating resistance in vitro and synergize with multiple antimalarial agents. PLoS Pathog. 15, e1007722 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhan, W. et al. Development of a highly selective Plasmodium falciparum proteasome inhibitor with anti-malaria activity in humanized mice. Angew. Chem. Int. Ed. Engl. 60, 9279–9283 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. LaMonte, G. M. et al. Development of a potent inhibitor of the Plasmodium proteasome with reduced mammalian toxicity. J. Med. Chem. 60, 6721–6732 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li, H. et al. Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature 530, 233–236 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yoo, E. et al. Defining the determinants of specificity of Plasmodium proteasome inhibitors. J. Am. Chem. Soc. 140, 11424–11437 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Deni, I. et al. Mitigating the risk of antimalarial resistance via covalent dual-subunit inhibition of the Plasmodium proteasome. Cell Chem. Biol. 30, 470–485 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wyllie, S. et al. Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proc. Natl Acad. Sci. USA 116, 9318–9323 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Khare, S. et al. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature 537, 229–233 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lima, M. L. et al. Identification of a proteasome-targeting arylsulfonamide with potential for the treatment of Chagas’ disease. Antimicrob. Agents Chemother. 66, e0153521 (2022).

    Article  PubMed  Google Scholar 

  126. Waller, R. F. et al. A type II pathway for fatty acid biosynthesis presents drug targets in Plasmodium falciparum. Antimicrob. Agents Chemother. 47, 297–301 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yeh, E. & DeRisi, J. L. Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol. 9, e1001138 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kennedy, K., Crisafulli, E. M. & Ralph, S. A. Delayed death by plastid inhibition in apicomplexan parasites. Trends Parasitol. 35, 747–759 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Tang, Y. et al. A mutagenesis screen for essential plastid biogenesis genes in human malaria parasites. PLoS Biol. 17, e3000136 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zhang, M. et al. Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science https://doi.org/10.1126/science.aap7847 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Bushell, E. et al. Functional profiling of a Plasmodium genome reveals an abundance of essential genes. Cell 170, 260–272.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Stanway, R. R. et al. Genome-scale identification of essential metabolic processes for targeting the Plasmodium liver stage. Cell 179, 1112–1128 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. MMV. MMV’s Pipeline of Antimalarial Drugs https://www.mmv.org/research-development/mmvs-pipeline-antimalarial-drugs (2023).

  134. Abd-Rahman, A. N., Zaloumis, S., McCarthy, J. S., Simpson, J. A. & Commons, R. J. Scoping review of antimalarial drug candidates in phase I and II drug development. Antimicrob. Agents Chemother. 66, e0165921 (2022).

    Article  PubMed  Google Scholar 

  135. Wu, R. L. et al. Low-dose subcutaneous or intravenous monoclonal antibody to prevent malaria. N. Engl. J. Med. 387, 397–407 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hameed, P. S. et al. Triaminopyrimidine is a fast-killing and long-acting antimalarial clinical candidate. Nat. Commun. 6, 6715 (2015).

    Article  Google Scholar 

  137. Barber, B. E. et al. Safety, pharmacokinetics, and antimalarial activity of the novel triaminopyrimidine ZY-19489: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study, pilot food-effect study, and volunteer infection study. Lancet Infect. Dis. 22, 879–890 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Daubenberger, C. & Burrows, J. N. Volunteer infection studies accelerate the clinical development of novel drugs against malaria. Lancet Infect. Dis. 22, 753–754 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Dive, D. & Biot, C. Ferroquine as an oxidative shock antimalarial. Curr. Top. Med. Chem. 14, 1684–1692 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Baragana, B. et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature 522, 315–320 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Baragana, B. et al. Discovery of a quinoline-4-carboxamide derivative with a novel mechanism of action, multistage antimalarial activity, and potent in vivo efficacy. J. Med. Chem. 59, 9672–9685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rottmann, M. et al. Preclinical antimalarial combination study of M5717, a Plasmodium falciparum elongation factor 2 inhibitor, and pyronaridine, a hemozoin formation inhibitor. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.02181-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. McCarthy, J. S. et al. Safety, pharmacokinetics, and antimalarial activity of the novel Plasmodium eukaryotic translation elongation factor 2 inhibitor M5717: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study and volunteer infection study. Lancet Infect. Dis. 21, 1713–1724 (2021). Reports promising human efficacy data with M5717 (cabamiquine) that is the basis of a phase II trial combination with pyronaridine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Meister, S. et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science 334, 1372–1377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kuhen, K. L. et al. KAF156 is an antimalarial clinical candidate with potential for use in prophylaxis, treatment, and prevention of disease transmission. Antimicrob. Agents Chemother. 58, 5060–5067 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Lehane, A. M. et al. Characterization of the ATP4 ion pump in Toxoplasma gondii. J. Biol. Chem. 294, 5720–5734 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kreutzfeld, O. et al. Associations between varied susceptibilities of PfATP4 inhibitors and genotypes in Ugandan Plasmodium falciparum isolates. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.00771-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Flannery, E. L. et al. Mutations in the P-type cation-transporter ATPase 4, PfATP4, mediate resistance to both aminopyrazole and spiroindolone antimalarials. ACS Chem. Biol. 10, 413–420 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Lim, M. Y. et al. UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes. Nat. Microbiol. 1, 16166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. LaMonte, G. et al. Mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) confer multidrug resistance. mBio https://doi.org/10.1128/mBio.00696-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Magistrado, P. A. et al. Plasmodium falciparum cyclic amine resistance locus (PfCARL), a resistance mechanism for two distinct compound classes. ACS Infect. Dis. 2, 816–826 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kublin, J. G. et al. Safety, pharmacokinetics, and causal prophylactic efficacy of KAF156 in a Plasmodium falciparum human infection study. Clin. Infect. Dis. 73, e2407–e2414 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Shah, R. et al. Formulation development and characterization of lumefantrine nanosuspension for enhanced antimalarial activity. J. Biomater. Sci. Polym. Ed. 32, 833–857 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. NOVARTIS. Novartis and Medicines for Malaria Venture Announce Decision to move to Phase 3 study for Novel Ganaplacide/Lumefantrine-SDF Combination in Adults and Children with Malaria https://www.novartis.com/news/media-releases/novartis-and-medicines-malaria-venture-announce-decision-move-phase-3-study-novel-ganaplacidelumefantrine-sdf-combination-adults-and-children-malaria (2022).

  155. Srivastava, I. K. & Vaidya, A. B. A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob. Agents Chemother. 43, 1334–1339 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Murithi, J. M. et al. The antimalarial MMV688533 provides potential for single-dose cures with a high barrier to Plasmodium falciparum parasite resistance. Sci. Transl Med https://doi.org/10.1126/scitranslmed.abg6013 (2021). Reports a promising new antimalarial with a low resistance risk, fast parasite clerance and excellent pharmacological properties.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Taft, B. R. et al. Discovery and preclinical pharmacology of INE963, a potent and fast-acting blood-stage antimalarial with a high barrier to resistance and potential for single-dose cures in uncomplicated malaria. J. Med. Chem. 65, 3798–3813 (2022). INE963 is a novel irresistible chemotype with fast parasite clearance and is completing phase I clinical study.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Duffy, P. E. & Patrick Gorres, J. Malaria vaccines since 2000: progress, priorities, products. NPJ Vaccines 5, 48 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Pethrak, C. et al. New Insights into antimalarial chemopreventive activity of antifolates. Antimicrob. Agents Chemother. 66, e0153821 (2022).

    Article  PubMed  Google Scholar 

  160. Katsuno, K. et al. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat. Rev. Drug Discov. 14, 751–758 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. de Vries, L. E. et al. Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183. Nat. Commun. 13, 2158 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Pegoraro, S. et al. SC83288 is a clinical development candidate for the treatment of severe malaria. Nat. Commun. 8, 14193 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. MMV. MMV’s Pipeline of Antimalarial Drugs: GSK484 https://www.mmv.org/mmv-pipeline-antimalarial-drugs/gsk484 (2023).

  164. MMV. MMV’s Pipeline of Antimalarial Drugs: IWY35 https://www.mmv.org/mmv-pipeline-antimalarial-drugs/iwy357 (2023).

  165. Tisnerat, C., Dassonville-Klimpt, A., Gosselet, F. & Sonnet, P. Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. Curr. Med. Chem. 29, 3326–3365 (2022).

    Article  CAS  PubMed  Google Scholar 

  166. Smilkstein, M. J. et al. ELQ-331 as a prototype for extremely durable chemoprotection against malaria. Malar. J. 18, 291 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Nilsen, A. et al. Quinolone-3-diarylethers: a new class of antimalarial drug. Sci. Transl Med. 5, 177ra137 (2013).

    Article  Google Scholar 

  168. Dola, V. R. et al. Synthesis and evaluation of chirally defined side chain variants of 7-chloro-4-aminoquinoline to overcome drug resistance in malaria chemotherapy.Antimicrob. Agents Chemother. 61, e01152-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  169. MMV. MMV’s Pipeline of Antimalarial Drugs: MMV609 https://www.mmv.org/mmv-pipeline-antimalarial-drugs/mmv609 (2023).

  170. Jimenez-Diaz, M. B. et al. (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. Proc. Natl Acad. Sci. USA 111, E5455–E5462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Sulyok, M. et al. DSM265 for Plasmodium falciparum chemoprophylaxis: a randomised, double blinded, phase 1 trial with controlled human malaria infection. Lancet Infect. Dis. 17, 636–644 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Demarta-Gatsi, C. et al. Malarial PI4K inhibitor induced diaphragmatic hernias in rat: potential link with mammalian kinase inhibition. Birth Defects Res. 114, 487–498 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Moehrle, J. J. et al. First-in-man safety and pharmacokinetics of synthetic ozonide OZ439 demonstrates an improved exposure profile relative to other peroxide antimalarials. Br. J. Clin. Pharmacol. 75, 524–537 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Adoke, Y. et al. A randomized, double-blind, phase 2b study to investigate the efficacy, safety, tolerability and pharmacokinetics of a single-dose regimen of ferroquine with artefenomel in adults and children with uncomplicated Plasmodium falciparum malaria. Malar. J. 20, 222 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ravikumar, A., Arzumanyan, G. A., Obadi, M. K. A., Javanpour, A. A. & Liu, C. C. Scalable, continuous evolution of genes at mutation rates above genomic error thresholds. Cell 175, 1946–1957 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Christopoulos, K. A. et al. First demonstration project of long-acting injectable antiretroviral therapy for persons with and without detectable HIV viremia in an urban HIV clinic. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciac631 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Schmidt, H. A., Rodolph, M., Schaefer, R., Baggaley, R. & Doherty, M. Long-acting injectable cabotegravir: implementation science needed to advance this additional HIV prevention choice. J. Int. AIDS Soc. 25, e25963 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Song, Z., Iorga, B. I., Mounkoro, P., Fisher, N. & Meunier, B. The antimalarial compound ELQ-400 is an unusual inhibitor of the bc1 complex, targeting both Qo and Qi sites. FEBS Lett. 592, 1346–1356 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Stickles, A. M. et al. Atovaquone and ELQ-300 combination therapy as a novel dual-site cytochrome bc1 inhibition strategy for malaria. Antimicrob. Agents Chemother. 60, 4853–4859 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. de Villiers, K. A. & Egan, T. J. Heme detoxification in the malaria parasite: a target for antimalarial drug development. Acc. Chem. Res. 54, 2649–2659 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Heinberg, A. & Kirkman, L. The molecular basis of antifolate resistance in Plasmodium falciparum: looking beyond point mutations. Ann. NY Acad. Sci. 1342, 10–18 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Chitnumsub, P. et al. The structure of Plasmodium falciparum hydroxymethyldihydropterin pyrophosphokinase-dihydropteroate synthase reveals the basis of sulfa resistance. FEBS J. 287, 3273–3297 (2020).

    Article  CAS  PubMed  Google Scholar 

  183. Wang, X. et al. MEPicides: α,β-unsaturated fosmidomycin analogues as DXR inhibitors against malaria. J. Med. Chem. 61, 8847–8858 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Herman, J. D. et al. The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs. Sci. Transl Med. 7, 288ra277 (2015).

    Article  Google Scholar 

  185. Keller, T. L. et al. Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nat. Chem. Biol. 8, 311–317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Derbyshire, E. R., Mazitschek, R. & Clardy, J. Characterization of Plasmodium liver stage inhibition by halofuginone. ChemMedChem 7, 844–849 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Dharia, N. V. et al. Genome scanning of Amazonian Plasmodium falciparum shows subtelomeric instability and clindamycin-resistant parasites. Genome Res. 20, 1534–1544 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Collins, K. A. et al. DSM265 at 400 milligrams clears asexual stage parasites but not mature gametocytes from the blood of healthy subjects experimentally infected with Plasmodium falciparum. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.01837-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  189. White, J. et al. Identification and mechanistic understanding of dihydroorotate dehydrogenase point mutations in Plasmodium falciparum that confer in vitro resistance to the clinical candidate DSM265. ACS Infect. Dis. 5, 90–101 (2019).

    Article  CAS  PubMed  Google Scholar 

  190. Belard, S. & Ramharter, M. DSM265: a novel drug for single-dose cure of Plasmodium falciparum malaria. Lancet Infect. Dis. 18, 819–820 (2018).

    Article  PubMed  Google Scholar 

  191. Palmer, M. J. et al. Potent antimalarials with development potential identified by structure-guided computational optimization of a pyrrole-based dihydroorotate dehydrogenase inhibitor series. J. Med. Chem. 64, 6085–6136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ndayisaba, G. et al. Hepatic safety and tolerability of cipargamin (KAE609), in adult patients with Plasmodium falciparum malaria: a randomized, phase II, controlled, dose-escalation trial in sub-Saharan Africa. Malar. J. 20, 478 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. McCarthy, J. S. et al. Defining the antimalarial activity of cipargamin in healthy volunteers experimentally infected with blood-stage Plasmodium falciparum. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.01423-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Ashton, T. D. et al. Optimization of 2,3-dihydroquinazolinone-3-carboxamides as antimalarials targeting PfATP4. J. Med. Chem. https://doi.org/10.1021/acs.jmedchem.2c02092 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Liang, X. et al. Discovery of 6′-chloro-N-methyl-5′-(phenylsulfonamido)-[3,3′-bipyridine]−5-carboxamide (CHMFL-PI4K-127) as a novel Plasmodium falciparum PI(4)K inhibitor with potent antimalarial activity against both blood and liver stages of Plasmodium. Eur. J. Med. Chem. 188, 112012 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Brunschwig, C. et al. UCT943, a next-generation Plasmodium falciparum PI4K inhibitor preclinical candidate for the treatment of malaria.Antimicrob. Agents Chemother. 62, e00012-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Cabrera, D. G. et al. Plasmodial kinase inhibitors: license to cure? J. Med. Chem. 61, 8061–8077 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sinxadi, P. et al. Safety, tolerability, pharmacokinetics, and antimalarial activity of the novel Plasmodium phosphatidylinositol 4-kinase inhibitor MMV390048 in healthy volunteers. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.01896-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Khandelwal, A. et al. Translation of liver stage activity of M5717, a Plasmodium elongation factor 2 inhibitor: from bench to bedside. Malar. J. 21, 151 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ng, C. L. et al. CRISPR-Cas9-modified pfmdr1 protects Plasmodium falciparum asexual blood stages and gametocytes against a class of piperazine-containing compounds but potentiates artemisinin-based combination therapy partner drugs. Mol. Microbiol. 101, 381–393 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. de Lera Ruiz, M. et al. The invention of WM382, a highly potent PMIX/X dual inhibitor toward the treatment of malaria. ACS Med. Chem. Lett. 13, 1745–1754 (2022).

    Article  PubMed  Google Scholar 

  202. Lowe, M. A. et al. Discovery and characterization of potent, efficacious, orally available antimalarial plasmepsin X inhibitors and preclinical safety assessment of UCB7362. J. Med. Chem. 65, 14121–14143 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Nasamu, A. S. et al. Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science 358, 518–522 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Schwertz, G. et al. Antimalarial inhibitors targeting serine hydroxymethyltransferase (SHMT) with in vivo efficacy and analysis of their binding mode based on X-ray cocrystal structures. J. Med. Chem. 60, 4840–4860 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Zaki, M. E. A., Al-Hussain, S. A., Masand, V. H., Akasapu, S. & Lewaa, I. QSAR and pharmacophore modeling of nitrogen heterocycles as potent human N-myristoyltransferase (Hs-NMT) inhibitors. Molecules https://doi.org/10.3390/molecules26071834 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Schlott, A. C., Holder, A. A. & Tate, E. W. N-Myristoylation as a drug target in malaria: exploring the role of N-myristoyltransferase substrates in the inhibitor mode of action. ACS Infect. Dis. 4, 449–457 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. de Vries, L. E., Lunghi, M., Krishnan, A., Kooij, T. W. A. & Soldati-Favre, D. Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets. PLoS Pathog. 17, e1010124 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Bopp, S. et al. Potent acyl-CoA synthetase 10 inhibitors kill Plasmodium falciparum by disrupting triglyceride formation. Nat. Commun. 14, 1455 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Chhibber-Goel, J., Yogavel, M. & Sharma, A. Structural analyses of the malaria parasite aminoacyl-tRNA synthetases provide new avenues for antimalarial drug discovery. Protein Sci. 30, 1793–1803 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Novoa, E. M. et al. Analogs of natural aminoacyl-tRNA synthetase inhibitors clear malaria in vivo. Proc. Natl Acad. Sci. USA 111, E5508–E5517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. von Bredow, L. et al. Synthesis, antiplasmodial, and antileukemia activity of dihydroartemisinin-HDAC inhibitor hybrids as multitarget drugs. Pharmaceuticals https://doi.org/10.3390/ph15030333 (2022).

    Article  Google Scholar 

  212. Jublot, D. et al. A histone deacetylase (HDAC) inhibitor with pleiotropic in vitro anti-toxoplasma and anti-Plasmodium activities controls acute and chronic toxoplasma infection in mice. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23063254 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Wang, M. et al. Drug repurposing of quisinostat to discover novel Plasmodium falciparum HDAC1 inhibitors with enhanced triple-stage antimalarial activity and improved safety. J. Med. Chem. 65, 4156–4181 (2022).

    Article  CAS  PubMed  Google Scholar 

  214. Zhang, H. et al. Design, synthesis, and optimization of macrocyclic peptides as species-selective antimalaria proteasome inhibitors. J. Med. Chem. 65, 9350–9375 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Almaliti, J. et al. Development of potent and highly selective epoxyketone-based Plasmodium proteasome inhibitors. Chemistry https://doi.org/10.1002/chem.202203958 (2023).

    Article  PubMed  Google Scholar 

  216. Kabeche, S. et al. Nonbisphosphonate inhibitors of Plasmodium falciparum FPPS/GGPPS. Bioorg Med. Chem. Lett. 41, 127978 (2021).

    Article  CAS  PubMed  Google Scholar 

  217. Gisselberg, J. E., Herrera, Z., Orchard, L. M., Llinás, M. & Yeh, E. Specific inhibition of the bifunctional farnesyl/geranylgeranyl diphosphate synthase in malaria parasites via a new small-molecule binding site. Cell Chem. Biol. 25, 185–193.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  218. Venkatramani, A., Gravina Ricci, C., Oldfield, E. & McCammon, J. A. Remarkable similarity in Plasmodium falciparum and Plasmodium vivax geranylgeranyl diphosphate synthase dynamics and its implication for antimalarial drug design. Chem. Biol. Drug Des. 91, 1068–1077 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Gabriel, H. B. et al. Single-target high-throughput transcription analyses reveal high levels of alternative splicing present in the FPPS/GGPPS from Plasmodium falciparum. Sci. Rep. 5, 18429 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Jordão, F. M. et al. Cloning and characterization of bifunctional enzyme farnesyl diphosphate/geranylgeranyl diphosphate synthase from Plasmodium falciparum. Malar. J. 12, 184 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Ricci, C. G. et al. Dynamic structure and inhibition of a malaria drug target: geranylgeranyl diphosphate synthase. Biochemistry 55, 5180–5190 (2016).

    Article  Google Scholar 

  222. Istvan, E. S. et al. Plasmodium Niemann-Pick type C1-related protein is a druggable target required for parasite membrane homeostasis. eLife https://doi.org/10.7554/eLife.40529 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Moustakim, M. et al. Discovery of a PCAF bromodomain chemical probe. Angew. Chem. Int. Ed. Engl. 56, 827–831 (2017).

    Article  CAS  PubMed  Google Scholar 

  224. Swift, R. P., Rajaram, K., Liu, H. B. & Prigge, S. T. Dephospho-CoA kinase, a nuclear-encoded apicoplast protein, remains active and essential after Plasmodium falciparum apicoplast disruption. EMBO J. 40, e107247 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Fletcher, S. et al. Biological characterization of chemically diverse compounds targeting the Plasmodium falciparum coenzyme A synthesis pathway. Parasit. Vectors 9, 589 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Salazar, E. et al. Characterization of Plasmodium falciparum adenylyl cyclase-β and its role in erythrocytic stage parasites. PLoS ONE 7, e39769 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Jiang, X. An overview of the Plasmodium falciparum hexose transporter and its therapeutic interventions. Proteins https://doi.org/10.1002/prot.26351 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Barbieri, D. et al. The phosphodiesterase inhibitor tadalafil promotes splenic retention of Plasmodium falciparum gametocytes in humanized mice. Front. Cell Infect. Microbiol. 12, 883759 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Ding, S. et al. Probing the B- & C-rings of the antimalarial tetrahydro-beta-carboline MMV008138 for steric and conformational constraints. Bioorg Med. Chem. Lett. 30, 127520 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Imlay, L. S. et al. Plasmodium IspD (2-C-methyl-D-erythritol 4-phosphate cytidyltransferase), an essential and druggable antimalarial target. ACS Infect. Dis. 1, 157–167 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Nerlich, C., Epalle, N. H., Seick, P. & Beitz, E. Discovery and development of inhibitors of the plasmodial FNT-type lactate transporter as novel antimalarials. Pharmaceuticals https://doi.org/10.3390/ph14111191 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Walloch, P., Hansen, C., Priegann, T., Schade, D. & Beitz, E. Pentafluoro-3-hydroxy-pent-2-en-1-ones potently inhibit FNT-type lactate transporters from all five human-pathogenic Plasmodium species. ChemMedChem 16, 1283–1289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Peng, X. et al. Structural characterization of the Plasmodium falciparum lactate transporter PfFNT alone and in complex with antimalarial compound MMV007839 reveals its inhibition mechanism. PLoS Biol. 19, e3001386 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Hapuarachchi, S. V. et al. The malaria parasite’s lactate transporter PfFNT is the target of antiplasmodial compounds identified in whole cell phenotypic screens. PLoS Pathog. 13, e1006180 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Golldack, A. et al. Substrate-analogous inhibitors exert antimalarial action by targeting the Plasmodium lactate transporter PfFNT at nanomolar scale. PLoS Pathog. 13, e1006172 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Frydrych, J. et al. Nucleotide analogues containing a pyrrolidine, piperidine or piperazine ring: Synthesis and evaluation of inhibition of plasmodial and human 6-oxopurine phosphoribosyltransferases and in vitro antimalarial activity. Eur. J. Med. Chem. 219, 113416 (2021).

    Article  CAS  PubMed  Google Scholar 

  237. Wang, X. et al. Identification of Plasmodium falciparum mitochondrial malate: quinone oxidoreductase inhibitors from the pathogen box. Genes https://doi.org/10.3390/genes10060471 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Sonoiki, E. et al. A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue. Nat. Commun. 8, 14574 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Yoo, E. et al. The antimalarial natural product salinipostin A identifies essential alpha/beta serine hydrolases involved in lipid metabolism in P. falciparum parasites. Cell Chem. Biol. 27, 143–157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Burrows, J. N. et al. New developments in anti-malarial target candidate and product profiles. Malar. J. 16, 26 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Wouters, O. J., McKee, M. & Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. J. Am. Med. Assoc. 323, 844–853 (2020).

    Article  Google Scholar 

  242. Baird, J. K. 8-Aminoquinoline therapy for latent malaria. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00011-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  243. MMV. Keeping the Promise https://www.mmv.org/sites/default/files/uploads/docs/publications/KeepingThePromise-Report_2021.pdf (2021).

  244. de Jong, R. M. et al. Monoclonal antibodies block transmission of genetically diverse Plasmodium falciparum strains to mosquitoes. NPJ Vaccines 6, 101 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Rathore, D., Sacci, J. B., de la Vega, P. & McCutchan, T. F. Binding and invasion of liver cells by Plasmodium falciparum sporozoites. Essential involvement of the amino terminus of circumsporozoite protein. J. Biol. Chem. 277, 7092–7098 (2002).

    Article  CAS  PubMed  Google Scholar 

  246. Casares, S., Brumeanu, T. D. & Richie, T. L. The RTS,S malaria vaccine. Vaccine 28, 4880–4894 (2010).

    Article  CAS  PubMed  Google Scholar 

  247. Gaudinski, M. R. et al. A monoclonal antibody for malaria prevention. N. Engl. J. Med. 385, 803–814 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Kayentao, K. et al. Safety and efficacy of a monoclonal antibody against malaria in Mali. N. Engl. J. Med. 387, 1833–1842 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Wang, L. T. et al. A potent anti-malarial human monoclonal antibody targets circumsporozoite protein minor repeats and neutralizes sporozoites in the liver. Immunity 53, 733–744 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. van der Boor, S. C. et al. Safety, tolerability, and Plasmodium falciparum transmission-reducing activity of monoclonal antibody TB31F: a single-centre, open-label, first-in-human, dose-escalation, phase 1 trial in healthy malaria-naive adults. Lancet Infect. Dis. 22, 1596–1605 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Hernandez, I. et al. Pricing of monoclonal antibody therapies: higher if used for cancer? Am. J. Manag. Care 24, 109–112 (2018).

    PubMed  Google Scholar 

  252. Mathews, E. S. & Odom John, A. R. Tackling resistance: emerging antimalarials and new parasite targets in the era of elimination. F1000Res https://doi.org/10.12688/f1000research.14874.1 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Macintyre, F. et al. Injectable anti-malarials revisited: discovery and development of new agents to protect against malaria. Malar. J. 17, 402 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Bakshi, R. P. et al. Long-acting injectable atovaquone nanomedicines for malaria prophylaxis. Nat. Commun. 9, 315 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Menze, B. D. et al. Marked aggravation of pyrethroid resistance in major malaria vectors in Malawi between 2014 and 2021 is partly linked with increased expression of P450 alleles. BMC Infect. Dis. 22, 660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Paton, D. G. et al. Exposing Anopheles mosquitoes to antimalarials blocks Plasmodium parasite transmission. Nature 567, 239–243 (2019). Reported that adding the antimalarial atovaquone to surfaces could lead to trans-dermal drug uptake into infected mosquitoes and block P. falciparum parasite transmission.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Paton, D. G. et al. Using an antimalarial in mosquitoes overcomes Anopheles and Plasmodium resistance to malaria control strategies. PLoS Pathog. 18, e1010609 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Adolfi, A. et al. Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi. Nat. Commun. 11, 5553 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Hammond, A. et al. Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field. Nat. Commun. 12, 4589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Burrows, J. et al. A discovery and development roadmap for new endectocidal transmission-blocking agents in malaria. Malar. J. 17, 462 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Miglianico, M. et al. Repurposing isoxazoline veterinary drugs for control of vector-borne human diseases. Proc. Natl Acad. Sci. USA 115, E6920–E6926 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Khaligh, F. G. et al. Endectocides as a complementary intervention in the malaria control program: a systematic review. Syst. Rev. 10, 30 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Llanos-Cuentas, A. et al. Tafenoquine versus primaquine to prevent relapse of Plasmodium vivax malaria. N. Engl. J. Med. 380, 229–241 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Lacerda, M. V. G. et al. Single-dose tafenoquine to prevent relapse of Plasmodium vivax malaria. N. Engl. J. Med. 380, 215–228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Camarda, G. et al. Antimalarial activity of primaquine operates via a two-step biochemical relay. Nat. Commun. 10, 3226 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Pybus, B. S. et al. The metabolism of primaquine to its active metabolite is dependent on CYP 2D6. Malar. J. 12, 212 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Silvino, A. C. R. et al. Novel insights into Plasmodium vivax therapeutic failure: CYP2D6 activity and time of exposure to malaria modulate the risk of recurrence. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.02056-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Roth, A. et al. A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum. Nat. Commun. 9, 1837 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Maher, S. P. et al. Probing the distinct chemosensitivity of Plasmodium vivax liver stage parasites and demonstration of 8-aminoquinoline radical cure activity in vitro. Sci. Rep. 11, 19905 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The University of Cape Town, Medicines for Malaria Venture (MMV09_0002, RD-17–0004 and RD-18–0001), Bill & Melinda Gates Foundation (OPP1066878 and INV-040482), South African Medical Research Council (SAMRC), Strategic Health Innovation Partnerships (SHIP) unit of the SAMRC, South African Technology Innovation Agency (TIA), Celgene, Merck KGaA (M3409), National Institutes of Health (NIH, 1R01AI152092–01 and 5R01 AI143521–04), and South African Research Chairs Initiative of the Department of Science and Innovation (DSI), administered through the South African National Research Foundation (NRF), are gratefully acknowledged for support (K.C. and K.W.). K.C. is the Neville Isdell Chair in African-centric Drug Discovery and Development and thanks Neville Isdell for generously funding the Chair. J.L.S.-N. is supported by the Bill & Melinda Gates Foundation (INV-007124) and the NIH (1 R01 AI151639 01). D.A.F. gratefully acknowledges funding from the Medicines for Malaria Venture (RD008/15), the Bill & Melinda Gates Foundation (INV-033538), the US Department of Defense (E01 W81XWH2210520) and the NIH (R01 AI109023, R37 AI050234, R01 AI124678). E.A.W. is supported by grants from the NIH (R01 AI152533) and the Bill & Melinda Gates Foundation (OPP1054480). The authors acknowledge Tim Wells for critically reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Elizabeth A. Winzeler.

Ethics declarations

Competing interests

J.N.B. is employed by the Medicines for Malaria Venture, which has a stake in developing many of the drugs cited in this Review.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Paul Gilson, Philip Rosenthal and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Medicines for Malaria Venture (MMV): https://www.mmv.org/

The Drugs for Neglected Diseases initiative (DNDi): https://dndi.org/advocacy/transparency-rd-costs/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siqueira-Neto, J.L., Wicht, K.J., Chibale, K. et al. Antimalarial drug discovery: progress and approaches. Nat Rev Drug Discov 22, 807–826 (2023). https://doi.org/10.1038/s41573-023-00772-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-023-00772-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing