Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oncogenic γ-herpesviruses: comparison of viral proteins involved in tumorigenesis

Key Points

  • The double-stranded DNA herpesviruses are classified into three subfamilies: α, β and γ. The γ-herpesviruses, which have been identified in many animal species, are lymphotropic and can establish a lifelong period of latency in their host, with intermittent periods of lytic replication.

  • This article focuses on three γ-herpesviruses, EBV, KSHV and HVS. KSHV and EBV infect humans, whereas the natural host for HVS is the squirrel monkey. The g-herpesviruses encode proteins that modulate signalling pathways, transform cells and also play a role in virus survival in the host environment. The genomes of EBV, KSHV and HVS contain an open-reading frame (ORF) at the 5'-end that possesses transforming potential. This ORF encodes latent membrane protein 1 (LMP1) in EBV, K1 in KSHV and STP in HVS. Each of these gene products is involved in activating B- or T-cell signal transduction pathways. Other important signal-modulatory proteins include EBV LMP2A, KSHV K15 and HVS Tip, a protein only found in HVS subgroup C. These gene products can inhibit signal transduction by the BCR (LMP2A and K15) and TCR (Tip). In addition, many other viral proteins are involved in the modulation of cellular signalling pathways, including EBV EBNA-2 and EBNA-3 gene products, and KSHV vGPCR and Kaposin.

  • During latent infection, the γ-herpesviruses express a small number of genes, some of which are required to maintain the viral genome in the episomal form and to support latent viral replication. The EBNA-1, LANA and ORF73 proteins of EBV, KSHV and HVS, respectively, perform this important function.

  • Viral cytokines that show sequence similarity to cellular cytokines play a role in cell proliferation and also contribute to virus survival within the host environment by allowing the virus to evade the host immune-surveillance machinery. Examples of these gene products include KSHV vIL-6, HVS vIL-17, EBV vIL-10 and the KSHV vCCLs.

Abstract

Herpesviruses are present in most species throughout the animal kingdom and are classified into three subfamilies, α, β and γ, on the basis of their biological properties and genome sequences. A striking feature that is shared by many of the γ-herpesviruses is their ability to induce neoplastic disease in the host. This review focuses on three γ-herpesviruses: Epstein–Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV) and herpesvirus saimiri (HVS), and discusses the diverse array of EBV, KSHV and HVS viral genes that are involved in transformation, cell signalling, episomal maintenance and cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A phylogenetic tree representing the γ-herpesviruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated virus (KSHV) and herpesvirus saimiri (HVS).
Figure 2: Alignment of the genomes of three γ-herpesviruses: Epstein–Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV) and herpesvirus saimiri (HVS).
Figure 3: Transforming proteins encoded by the first open reading frames of the γ-herpesviruses EBV, KSHV and HVS.
Figure 4: Cellular effects of the signal modulatory proteins EBV LMP2A, KSHV K15 and HVS TIP.
Figure 5: Viral cytokines and chemokines encoded by EBV, KSHV and HVS.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Damania, B. γ-Herpesviruses of Non-Human Primates. The Human Herpesviruses: Biology, Therapy and Immunoprophylaxis (Cambridge University Press, 2004).

    Google Scholar 

  2. Epstein, M. A., Achong, B. & Barr, Y. Virus particles in culture lymphoblasts from Burkitt's lymphoma. Lancet 15, 702–703 (1964). First report of the identification of EBV virions in B cells from Burkitt's lymphoma patients.

    Article  Google Scholar 

  3. Melendez, L. V., Daniel, M. D., Hunt, R. D. & Garcia, F. G. An apparently new herpesvirus from primary kidney cultures of the squirrel monkey (Saimiri sciureus). Lab. Anim. Care 18, 374–381 (1968). Identification of a novel herpesvirus in the squirrel monkey.

    CAS  PubMed  Google Scholar 

  4. Chang, Y. et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266, 1865–1869 (1994). Original paper reporting the discovery of the first human rhadinovirus, KSHV.

    Article  CAS  PubMed  Google Scholar 

  5. Fleckenstein, B. et al. Tumour induction with DNA of oncogenic primate herpesviruses. Nature 274, 57–59 (1978). First report to show that an intramuscular injection of purified virion HVS causes malignant disease in the experimental host.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, D., Liebowitz, D. & Kieff, E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43, 831–840 (1985). Showed that the main oncoprotein of EBV, LMP1, could transform cells in vitro.

    Article  CAS  PubMed  Google Scholar 

  7. Dawson, C. W., Rickinson, A. B. & Young, L. S. Epstein–Barr virus latent membrane protein inhibits human epithelial cell differentiation. Nature 344, 777–780 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Kaye, K. M., Izumi, K. M. & Kieff, E. Epstein–Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc. Natl Acad. Sci. USA 90, 9150–9154 (1993). First report to show that the LMP1 viral protein is essential for B-cell immortalization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Uchida, J. et al. Mimicry of CD40 signals by Epstein–Barr virus LMP1 in B-lymphocyte responses. Science 286, 300–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Gires, O. et al. Latent membrane protein 1 of Epstein–Barr virus mimics a constitutively active receptor molecule. EMBO J. 16, 6131–6140 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hatzivassiliou, E., Miller, W. E., Raab-Traub, N., Kieff, E. & Mosialos, G. A fusion of the EBV latent membrane protein-1 (LMP1) transmembrane domains to the CD40 cytoplasmic domain is similar to LMP1 in constitutive activation of epidermal growth factor receptor expression, nuclear factor-κB, and stress-activated protein kinase. J. Immunol. 160, 1116–1121 (1998).

    CAS  PubMed  Google Scholar 

  12. Kilger, E., Kieser, A., Baumann, M. & Hammerschmidt, W. Epstein–Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. 17, 1700–1709 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huen, D. S., Henderson, S. A., Croom-Carter, D. & Rowe, M. The Epstein–Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-κB and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 10, 549–560 (1995).

    CAS  PubMed  Google Scholar 

  14. Paine, E., Scheinman, R. I., Baldwin, A. S. Jr & Raab-Traub, N. Expression of LMP1 in epithelial cells leads to the activation of a select subset of NF-κB/Rel family proteins. J. Virol. 69, 4572–4576 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaye, K. M. et al. An Epstein–Barr virus that expresses only the first 231 LMP1 amino acids efficiently initiates primary B-lymphocyte growth transformation. J. Virol. 73, 10525–10530 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Devergne, O. et al. Role of the TRAF-binding site and NF-κB activation in Epstein–Barr virus latent membrane protein 1-induced cell gene expression. J. Virol. 72, 7900–7908 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eliopoulos, A. G., Blake, S. M., Floettmann, J. E., Rowe, M. & Young, L. S. Epstein–Barr virus-encoded latent membrane protein 1 activates the JNK pathway through its extreme C terminus via a mechanism involving TRADD and TRAF2. J. Virol. 73, 1023–1035 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Izumi, K. M. et al. The Epstein–Barr virus oncoprotein latent membrane protein 1 engages the tumor necrosis factor receptor-associated proteins TRADD and receptor-interacting protein (RIP) but does not induce apoptosis or require RIP for NF-κB activation. Mol. Cell. Biol. 19, 5759–5767 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sandberg, M., Hammerschmidt, W. & Sugden, B. Characterization of LMP-1's association with TRAF1, TRAF2, and TRAF3. J. Virol. 71, 4649–4656 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rothe, M., Wong, S. C., Henzel, W. J. & Goeddel, D. V. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78, 681–692 (1994). First report identifying the presence of TNF-receptor-associated proteins (TRAFs).

    Article  CAS  PubMed  Google Scholar 

  21. Izumi, K. M. et al. The residues between the two transformation effector sites of Epstein–Barr virus latent membrane protein 1 are not critical for B-lymphocyte growth transformation. J. Virol. 73, 9908–9916 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dawson, C. W., Tramountanis, G., Eliopoulos, A. G. & Young, L. S. Epstein–Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodeling. J. Biol. Chem. 278, 3694–3704 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Eliopoulos, A. G. & Young, L. S. Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein–Barr virus-encoded latent membrane protein 1 (LMP1). Oncogene 16, 1731–1742 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Higuchi, M., Izumi, K. M. & Kieff, E. Epstein–Barr virus latent-infection membrane proteins are palmitoylated and raft-associated: protein 1 binds to the cytoskeleton through TNF receptor cytoplasmic factors. Proc. Natl Acad. Sci. USA 98, 4675–4680 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yasui, T., Luftig, M., Soni, V. & Kieff, E. Latent infection membrane protein transmembrane FWLY is critical for intermolecular interaction, raft localization, and signaling. Proc. Natl Acad. Sci. USA 101, 278–283 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Murono, S. et al. Induction of cyclooxygenase-2 by Epstein–Barr virus latent membrane protein 1 is involved in vascular endothelial growth factor production in nasopharyngeal carcinoma cells. Proc. Natl Acad. Sci. USA 98, 6905–6910 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wakisaka, N., Murono, S., Yoshizaki, T., Furukawa, M. & Pagano, J. S. Epstein–Barr virus latent membrane protein 1 induces and causes release of fibroblast growth factor-2. Cancer Res. 62, 6337–6344 (2002).

    CAS  PubMed  Google Scholar 

  28. Yoshizaki, T., Sato, H., Furukawa, M. & Pagano, J. S. The expression of matrix metalloproteinase 9 is enhanced by Epstein–Barr virus latent membrane protein 1. Proc. Natl Acad. Sci. USA 95, 3621–3626 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thornburg, N. J., Pathmanathan, R. & Raab-Traub, N. Activation of nuclear factor-κB p50 homodimer/Bcl-3 complexes in nasopharyngeal carcinoma. Cancer Res. 63, 8293–8301 (2003).

    CAS  PubMed  Google Scholar 

  30. Miller, W. E., Cheshire, J. L., Baldwin, A. S. Jr & Raab-Traub, N. The NPC derived C15 LMP1 protein confers enhanced activation of NF-κB and induction of the EGFR in epithelial cells. Oncogene 16, 1869–1877 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, H. et al. Deregulation of cell growth by the K1 gene of Kaposi's sarcoma-associated herpesvirus. Nature Med. 4, 435–440 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Prakash, O. et al. Tumorigenesis and aberrant signaling in transgenic mice expressing the human herpesvirus-8 k1 gene. J. Natl Cancer Inst. 94, 926–935 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Lagunoff, M. & Ganem, D. The structure and coding organization of the genomic termini of Kaposi's sarcoma-associated herpesvirus. Virology 236, 147–154 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Lagunoff, M., Majeti, R., Weiss, A. & Ganem, D. Deregulated signal transduction by the K1 gene product of Kaposi's sarcoma-associated herpesvirus. Proc. Natl Acad. Sci. USA 96, 5704–5709 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, H. et al. Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi's sarcoma-associated herpesvirus. Mol. Cell. Biol. 18, 5219–5228 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tomlinson, C. C. & Damania, B. The K1 protein of Kaposi's sarcoma-associated herpesvirus activates the Akt signaling pathway. J. Virol. 78, 1918–1927 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Samaniego, F., Markham, P. D., Gallo, R. C. & Ensoli, B. Inflammatory cytokines induce AIDS-Kaposi's sarcoma-derived spindle cells to produce and release basic fibroblast growth factor and enhance Kaposi's sarcoma-like lesion formation in nude mice. J. Immunol. 154, 3582–3592 (1995).

    CAS  PubMed  Google Scholar 

  38. Samaniego, F., Pati, S., Karp, J., Prakash, O. & Bose, D. Human herpesvirus 8 K1-associated nuclear factor-κB-dependent promoter activity: role in Kaposi's sarcoma inflammation? J. Natl Cancer Inst. Monogr. 28, 15–23 (2001).

    Google Scholar 

  39. Lee, B. S., Connole, M., Tang, Z., Harris, N. L. & Jung, J. U. Structural analysis of the Kaposi's sarcoma-associated herpesvirus K1 protein. J. Virol. 77, 8072–8086 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, L. et al. The Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) K1 protein induces expression of angiogenic and invasion factors. Cancer Res. 64, 2774–2781 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Desrosiers, R. C. & Falk, L. A. Herpesvirus saimiri strain variability. J. Virol. 43, 352–356 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duboise, S. M., Guo, J., Czajak, S., Desrosiers, R. C. & Jung, J. U. STP and Tip are essential for herpesvirus saimiri oncogenicity. J. Virol. 72, 1308–1313 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Murthy, S. C., Trimble, J. J. & Desrosiers, R. C. Deletion mutants of herpesvirus saimiri define an open reading frame necessary for transformation. J. Virol. 63, 3307–3314 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jung, J. U. et al. Identification of transforming genes of subgroup A and C strains of herpesvirus saimiri. Proc. Natl Acad. Sci. USA 88, 7051–7055 (1991). Demonstrated that the stp gene of HVS subgroup C was more oncogenic than the stp gene of subgroup A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Choi, J. K., Ishido, S. & Jung, J. U. The collagen repeat sequence is a determinant of the degree of herpesvirus saimiri STP transforming activity. J. Virol. 74, 8102–8110 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jung, J. U. & Desrosiers, R. C. Association of the viral oncoprotein STP-C488 with cellular Ras. Mol. Cell. Biol. 15, 6506–6512 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee, H. et al. Role of cellular tumor necrosis factor receptor-associated factors in NF-κB activation and lymphocyte transformation by herpesvirus saimiri STP. J. Virol. 73, 3913–3919 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Busson, P. et al. Consistent transcription of the Epstein–Barr virus LMP2 gene in nasopharyngeal carcinoma. J. Virol. 66, 3257–3262 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sample, J., Liebowitz, D. & Kieff, E. Two related Epstein–Barr virus membrane proteins are encoded by separate genes. J. Virol. 63, 933–937 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fruehling, S. & Longnecker, R. The immunoreceptor tyrosine-based activation motif of Epstein–Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology 235, 241–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Miller, C. L., Longnecker, R. & Kieff, E. Epstein–Barr virus latent membrane protein 2A blocks calcium mobilization in B lymphocytes. J. Virol. 67, 3087–3094 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dykstra, M. L., Longnecker, R. & Pierce, S. K. Epstein–Barr virus co-opts lipid rafts to block the signaling and antigen transport functions of the BCR. Immunity 14, 57–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Miller, C. L., Lee, J. H., Kieff, E. & Longnecker, R. An integral membrane protein (LMP2) blocks reactivation of Epstein–Barr virus from latency following surface immunoglobulin crosslinking. Proc. Natl Acad. Sci. USA 91, 772–776 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fukuda, M. & Longnecker, R. Latent membrane protein 2A inhibits transforming growth factor-β1-induced apoptosis through the phosphatidylinositol 3-kinase/Akt pathway. J. Virol. 78, 1697–1705 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Caldwell, R. G., Wilson, J. B., Anderson, S. J. & Longnecker, R. Epstein–Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9, 405–411 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Longnecker, R., Miller, C. L., Miao, X. Q., Tomkinson, B. & Kieff, E. The last seven transmembrane and carboxy-terminal cytoplasmic domains of Epstein–Barr virus latent membrane protein 2 (LMP2) are dispensable for lymphocyte infection and growth transformation in vitro. J. Virol. 67, 2006–2013 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Scholle, F., Bendt, K. M. & Raab–Traub, N. Epstein–Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt. J. Virol. 74, 10681–10689 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Morrison, J. A., Klingelhutz, A. J. & Raab-Traub, N. Epstein–Barr virus latent membrane protein 2A activates β-catenin signaling in epithelial cells. J. Virol. 77, 12276–12284 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Glenn, M., Rainbow, L., Aurad, F., Davison, A. & Schulz, T. F. Identification of a spliced gene from Kaposi's sarcoma-associated herpesvirus encoding a protein with similarities to latent membrane proteins 1 and 2A of Epstein–Barr virus. J. Virol. 73, 6953–6963 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Choi, J., Lee, B. S., Shim, S., Li, M. & Jung, J. U. Identification of the novel K15 gene at the right-most end of Kaposi's sarcoma-associated herpesvirus genome. J. Virol. 74, 436–446 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Poole, L. J. et al. Comparison of genetic variability at multiple loci across the genomes of the major subtypes of Kaposi's sarcoma-associated herpesvirus reveals evidence for recombination and for two distinct types of open reading frame K15 alleles at the right-hand end. J. Virol. 73, 6646–6660 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brinkmann, M. M. et al. Activation of mitogen-activated protein kinase and NF-κB pathways by a Kaposi's sarcoma-associated herpesvirus K15 membrane protein. J. Virol. 77, 9346–9358 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Biesinger, B. et al. The product of the herpesvirus saimiri open reading frame 1 (tip) interacts with T-cell-specific kinase p56lck in transformed cells. J. Biol. Chem. 270, 4729–4734 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Jung, J. U. et al. Identification of Lck-binding elements in tip of herpesvirus saimiri. J. Biol. Chem. 270, 20660–20667 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Jung, J. U. et al. Downregulation of Lck-mediated signal transduction by tip of herpesvirus saimiri. J. Virol. 69, 7814–7822 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kjellen, P., Amdjadi, K., Lund, T. C., Medveczky, P. G. & Sefton, B. M. The herpesvirus saimiri tip484 and tip488 proteins both stimulate lck tyrosine protein kinase activity in vivo and in vitro. Virology 297, 281–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Lund, T., Medveczky, M. M. & Medveczky, P. G. Herpesvirus saimiri tip-484 membrane protein markedly increases p56lck activity in T cells. J. Virol. 71, 378–382 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guo, J. et al. Enhanced downregulation of Lck-mediated signal transduction by a Y114 mutation of herpesvirus saimiri tip. J. Virol. 71, 7092–7096 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lund, T. C., Prator, P. C., Medveczky, M. M. & Medveczky, P. G. The Lck binding domain of herpesvirus saimiri tip-484 constitutively activates Lck and STAT3 in T cells. J. Virol. 73, 1689–1694 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wehner, L. E. et al. Herpesvirus saimiri Tip gene causes T-cell lymphomas in transgenic mice. DNA Cell. Biol. 20, 81–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Wang, F., Kikutani, H., Tsang, S. F., Kishimoto, T. & Kieff, E. Epstein–Barr virus nuclear protein 2 transactivates a cis-acting CD23 DNA element. J. Virol. 65, 4101–4106 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Grossman, S. R., Johannsen, E., Tong, X., Yalamanchili, R. & Kieff, E. The Epstein–Barr virus nuclear antigen 2 transactivator is directed to response elements by the J κ recombination signal-binding protein. Proc. Natl Acad. Sci. USA 91, 7568–7572 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kaiser, C. et al. The proto-oncogene c-myc is a direct target gene of Epstein–Barr virus nuclear antigen 2. J. Virol. 73, 4481–4484 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tong, X., Wang, F., Thut, C. J. & Kieff, E. The Epstein–Barr virus nuclear protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70 but not with TATA-binding protein. J. Virol. 69, 585–588 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, L., Grossman, S. R. & Kieff, E. Epstein–Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proc. Natl Acad. Sci. USA 97, 430–435 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rabson, M., Gradoville, L., Heston, L. & Miller, G. Non-immortalizing P3J-HR-1 Epstein–Barr virus: a deletion mutant of its transforming parent, Jijoye. J. Virol. 44, 834–844 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hammerschmidt, W. & Sugden, B. Genetic analysis of immortalizing functions of Epstein–Barr virus in human B lymphocytes. Nature 340, 393–397 (1989).

    Article  CAS  PubMed  Google Scholar 

  78. Cohen, J. I., Wang, F., Mannick, J. & Kieff, E. Epstein–Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc. Natl Acad. Sci. USA 86, 9558–9562 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tomkinson, B., Robertson, E. & Kieff, E. Epstein–Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J. Virol. 67, 2014–2025 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sample, C. & Parker, B. Biochemical characterization of Epstein–Barr virus nuclear antigen 3A and 3C proteins. Virology 205, 534–539 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Tomkinson, B. & Kieff, E. Use of second-site homologous recombination to demonstrate that Epstein–Barr virus nuclear protein 3B is not important for lymphocyte infection or growth transformation in vitro. J. Virol. 66, 2893–2903 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Le Roux, A., Kerdiles, B., Walls, D., Dedieu, J. F. & Perricaudet, M. The Epstein–Barr virus determined nuclear antigens EBNA-3A,-3B, and -3C repress EBNA-2-mediated transactivation of the viral terminal protein 1 gene promoter. Virology 205, 596–602 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Robertson, E. S., Lin, J. & Kieff, E. The amino-terminal domains of Epstein–Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ(κ). J. Virol. 70, 3068–3074 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Marshall, D. & Sample, C. Epstein–Barr virus nuclear antigen 3C is a transcriptional regulator. J. Virol. 69, 3624–3630 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Parker, G. A. et al. Epstein–Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus E1A and papillomavirus E7. Oncogene 13, 2541–2549 (1996).

    CAS  PubMed  Google Scholar 

  86. Staskus, K. A. et al. Cellular tropism and viral interleukin-6 expression distinguish human herpesvirus 8 involvement in Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. J. Virol. 73, 4181–4187 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sadler, R. et al. A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi's sarcoma-associated herpesvirus. J. Virol. 73, 5722–5730 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kliche, S. et al. Signaling by human herpesvirus 8 kaposin A through direct membrane recruitment of cytohesin-1. Mol. Cell 7, 833–843 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Muralidhar, S. et al. Identification of kaposin (open reading frame K12) as a human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus) transforming gene. J. Virol. 72, 4980–4988 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Muralidhar, S. et al. Characterization of the human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus) oncogene, kaposin (ORF K12). J. Clin. Virol. 16, 203–213 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Cesarman, E. et al. Kaposi's sarcoma-associated herpesvirus contains G protein-coupled receptor and cyclin D homologs which are expressed in Kaposi's sarcoma and malignant lymphoma. J. Virol. 70, 8218–8223 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Guo, H. G. et al. Characterization of a chemokine receptor-related gene in human herpesvirus 8 and its expression in Kaposi's sarcoma. Virology 228, 371–378 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Chiou, C. J. et al. Patterns of gene expression and a transactivation function exhibited by the vGCR (ORF74) chemokine receptor protein of Kaposi's sarcoma-associated herpesvirus. J. Virol. 76, 3421–3439 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Arvanitakis, L., Geras-Raaka, E., Varma, A., Gershengorn, M. C. & Cesarman, E. Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385, 347–350 (1997). Characterized the KSHV GPCR protein as a constitutively active signalling receptor protein.

    Article  CAS  PubMed  Google Scholar 

  95. Gershengorn, M. C., Geras-Raaka, E., Varma, A. & Clark-Lewis, I. Chemokines activate Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor in mammalian cells in culture. J. Clin. Invest. 102, 1469–1472 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Geras-Raaka, E., Varma, A., Clark-Lewis, I. & Gershengorn, M. C. Kaposi's sarcoma-associated herpesvirus (KSHV) chemokine vMIP-II and human SDF-1α inhibit signaling by KSHV G protein-coupled receptor. Biochem. Biophys. Res. Commun. 253, 725–727 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Geras-Raaka, E., Varma, A., Ho, H., Clark-Lewis, I. & Gershengorn, M. C. Human interferon-γ-inducible protein 10 (IP-10) inhibits constitutive signaling of Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. J. Exp. Med. 188, 405–408 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sodhi, A. et al. The Kaposi's sarcoma-associated herpes virus G protein-coupled receptor upregulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1α. Cancer Res. 60, 4873–4880 (2000).

    CAS  PubMed  Google Scholar 

  99. Montaner, S., Sodhi, A., Pece, S., Mesri, E. A. & Gutkind, J. S. The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor promotes endothelial cell survival through the activation of Akt/protein kinase B. Cancer Res. 61, 2641–2648 (2001).

    CAS  PubMed  Google Scholar 

  100. Cannon, M., Philpott, N. J. & Cesarman, E. The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor has broad signaling effects in primary effusion lymphoma cells. J. Virol. 77, 57–67 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bais, C. et al. Kaposi's sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/KDR. Cancer Cell 3, 131–143 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Bais, C. et al. G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391, 86–89 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Pati, S. et al. Activation of NF-κB by the human herpesvirus 8 chemokine receptor ORF74: evidence for a paracrine model of Kaposi's sarcoma pathogenesis. J. Virol. 75, 8660–8673 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Montaner, S. et al. Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 3, 23–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Yang, T. Y. et al. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma. J. Exp. Med. 191, 445–454 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Guo, H. G. et al. Kaposi's sarcoma-like tumors in a human herpesvirus 8 ORF74 transgenic mouse. J. Virol. 77, 2631–2639 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wilson, J. B., Bell, J. L. & Levine, A. J. Expression of Epstein–Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J. 15, 3117–3126 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Humme, S. et al. The EBV nuclear antigen 1 (EBNA1) enhances B-cell immortalization several thousandfold. Proc. Natl Acad. Sci. USA 100, 10989–10994 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sheu, L. F. et al. Enhanced malignant progression of nasopharyngeal carcinoma cells mediated by the expression of Epstein–Barr nuclear antigen 1 in vivo. J. Pathol. 180, 243–248 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Tsimbouri, P., Drotar, M. E., Coy, J. L. & Wilson, J. B. bcl-xL and RAG genes are induced and the response to IL-2 enhanced in EmuEBNA-1 transgenic mouse lymphocytes. Oncogene 21, 5182–5187 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Jones, R. J. et al. Epstein–Barr virus nuclear antigen 1 (EBNA1) induced cytotoxicity in epithelial cells is associated with EBNA1 degradation and processing. Virology 313, 663–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Levitskaya, J. et al. Inhibition of antigen processing by the internal repeat region of the Epstein–Barr virus nuclear antigen-1. Nature 375, 685–688 (1995). Demonstrated that the Gly–Ala repeats in EBV EBNA1 inhibited CTL recognition, indicating that the EBNA1 protein can help the virus evade host immune surveillance.

    Article  CAS  PubMed  Google Scholar 

  113. Levitskaya, J., Sharipo, A., Leonchiks, A., Ciechanover, A. & Masucci, M. G. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly–Ala repeat domain of the Epstein–Barr virus nuclear antigen 1. Proc. Natl Acad. Sci. USA 94, 12616–12621 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dittmer, D. et al. A cluster of latently expressed genes in Kaposi's sarcoma-associated herpesvirus. J. Virol. 72, 8309–8315 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fakhari, F. D. & Dittmer, D. P. Charting latency transcripts in Kaposi's sarcoma-associated herpesvirus by whole-genome real-time quantitative reverse transcription-PCR. J. Virol. 76 6213–6223 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dittmer, D. P. Transcription profile of Kaposi's sarcoma-associated herpesvirus in primary Kaposi's sarcoma lesions as determined by real-time PCR arrays. Cancer Res. 63, 2010–2015 (2003).

    CAS  PubMed  Google Scholar 

  117. Ballestas, M. E., Chatis, P. A. & Kaye, K. M. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284, 641–644 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Cotter, M. A., Subramanian, C. & Robertson, E. S. The Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen binds to specific sequences at the left end of the viral genome through its carboxy-terminus. Virology 291, 241–259 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Grundhoff, A. & Ganem, D. The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus permits replication of terminal repeat-containing plasmids. J. Virol. 77, 2779–2783 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Garber, A. C., Hu, J. & Renne, R. Lana cooperatively binds to two sites within the terminal repeat, both sites contribute to LANA's ability to suppress transcription and facilitate DNA replication. J. Biol. Chem. 277, 27401–27411 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Friborg, J. Jr, Kong, W., Hottiger, M. O. & Nabel, G. J. p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402, 889–894 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Radkov, S. A., Kellam, P. & Boshoff, C. The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nature Med. 6, 1121–1127 (2000). Showed that the major latent protein of KSHV, LANA, targets the Rb-E2F cellular pathway.

    Article  CAS  PubMed  Google Scholar 

  123. Fujimuro, M. et al. A novel viral mechanism for dysregulation of β-catenin in Kaposi's sarcoma-associated herpesvirus latency. Nature Med. 9, 300–306 (2003). Demonstrates that KSHV LANA stimulates S-phase entry and stabilizes β-catenin through a novel mechanism involving the cell cycle-dependent nuclear accumulation of its inhibitor GSK-3β.

    Article  CAS  PubMed  Google Scholar 

  124. Hall, K. T. et al. Characterization of the herpesvirus saimiri ORF73 gene product. J. Gen. Virol. 81, 2653–2658 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Schafer, A. et al. The latency-associated nuclear antigen homolog of herpesvirus saimiri inhibits lytic virus replication. J. Virol. 77, 5911–5925 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Calderwood, M. A., Hall, K. T., Matthews, D. A. & Whitehouse, A. The herpesvirus saimiri ORF73 gene product interacts with host-cell mitotic chromosomes and self-associates via its C terminus. J. Gen. Virol. 85, 147–153 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Verma, S. C. & Robertson, E. S. ORF73 of herpesvirus Saimiri strain C488 tethers the viral genome to metaphase chromosomes and binds to cis-acting DNA sequences in the terminal repeats. J. Virol. 77, 12494–12506 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hall, K. T. et al. The herpesvirus saimiri open reading frame 73 gene product interacts with the cellular protein p32. J. Virol. 76, 11612–11622 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lan, K., Kuppers, D. A., Verma, S. C. & Robertson, E. S. Kaposi's sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting Rta: a potential mechanism for virus-mediated control of latency. J. Virol. 78, 6585–6594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Miyazaki, I., Cheung, R. K. & Dosch, H. M. Viral interleukin 10 is critical for the induction of B cell growth transformation by Epstein–Barr virus. J. Exp. Med. 178, 439–447 (1993).

    Article  CAS  PubMed  Google Scholar 

  131. Zeidler, R. et al. Downregulation of TAP1 in B lymphocytes by cellular and Epstein–Barr virus-encoded interleukin-10. Blood 90, 2390–2397 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. de Waal Malefyt, R. et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen–presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J. Exp. Med. 174, 915–924 (1991).

    Article  CAS  PubMed  Google Scholar 

  133. Salek-Ardakani, S. et al. High level expression and purification of the Epstein–Barr virus encoded cytokine viral interleukin 10: efficient removal of endotoxin. Cytokine 17, 1–13 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Stuart, A. D., Stewart, J. P., Arrand, J. R. & Mackett, M. The Epstein–Barr virus encoded cytokine viral interleukin-10 enhances transformation of human B lymphocytes. Oncogene 11, 1711–1719 (1995).

    CAS  PubMed  Google Scholar 

  135. Bejarano, M. T. & Masucci, M. G. Interleukin-10 abrogates the inhibition of Epstein–Barr virus-induced B-cell transformation by memory T-cell responses. Blood 92, 4256–4262 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Suzuki, T. et al. Viral interleukin 10 (IL-10), the human herpes virus 4 cellular IL-10 homologue, induces local anergy to allogeneic and syngeneic tumors. J. Exp. Med. 182, 477–486 (1995).

    Article  CAS  PubMed  Google Scholar 

  137. Swaminathan, S., Hesselton, R., Sullivan, J. & Kieff, E. Epstein–Barr virus recombinants with specifically mutated BCRF1 genes. J. Virol. 67, 7406–7413 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Moore, P. S., Boshoff, C., Weiss, R. A. & Chang, Y. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 274, 1739–1744 (1996). Describes the functions of the KSHV-encoded viral cytokines.

    Article  CAS  PubMed  Google Scholar 

  139. Neipel, F. et al. Human herpesvirus 8 encodes a homolog of interleukin-6. J. Virol. 71, 839–842 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nicholas, J. et al. Kaposi's sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6. Nature Med. 3, 287–292 (1997).

    Article  CAS  PubMed  Google Scholar 

  141. Mori, Y. et al. Human herpesvirus 8-encoded interleukin-6 homologue (viral IL-6) induces endogenous human IL-6 secretion. J. Med. Virol. 61, 332–335 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Foussat, A. et al. Human interleukin-6 is in vivo an autocrine growth factor for human herpesvirus-8-infected malignant B lymphocytes. Eur. Cytokine Netw. 10, 501–508 (1999).

    CAS  PubMed  Google Scholar 

  143. Chatterjee, M., Osborne, J., Bestetti, G., Chang, Y. & Moore, P. S. Viral IL-6-induced cell proliferation and immune evasion of interferon activity. Science 298, 1432–1435 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Molden, J., Chang, Y., You, Y., Moore, P. S. & Goldsmith, M. A. A Kaposi's sarcoma-associated herpesvirus-encoded cytokine homolog (vIL-6) activates signaling through the shared gp130 receptor subunit. J. Biol. Chem. 272, 19625–19631 (1997).

    Article  CAS  PubMed  Google Scholar 

  145. Parravinci, C. et al. Expression of a virus-derived cytokine, KSHV vIL-6, in HIV-seronegative Castleman's disease. Am. J. Pathol. 151, 1517–1522 (1997).

    PubMed Central  Google Scholar 

  146. Jones, K. D. et al. Involvement of interleukin-10 (IL-10) and viral IL-6 in the spontaneous growth of Kaposi's sarcoma herpesvirus-associated infected primary effusion lymphoma cells. Blood 94, 2871–2879 (1999).

    Article  CAS  PubMed  Google Scholar 

  147. Parravicini, C. et al. Differential viral protein expression in Kaposi's sarcoma-associated herpesvirus-infected diseases: Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Am. J. Pathol. 156, 743–749 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Boshoff, C. et al. Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science 278, 290–294 (1997).

    Article  CAS  PubMed  Google Scholar 

  149. Sozzani, S. et al. The viral chemokine macrophage inflammatory protein-II is a selective TH2 chemoattractant. Blood 92, 4036–4039 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Stine, J. T. et al. KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and selectively chemoattracts TH2 cells. Blood 95, 1151–1157 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Nakano, K. et al. Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded vMIP-I and vMIP-II induce signal transduction and chemotaxis in monocytic cells. Arch. Virol. 148, 871–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Weber, K. S. et al. Selective recruitment of TH2-type cells and evasion from a cytotoxic immune response mediated by viral macrophage inhibitory protein-II. Eur. J. Immunol. 31, 2458–2466 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Yao, Z. et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3, 811–821 (1995).

    Article  CAS  PubMed  Google Scholar 

  154. Yao, Z. et al. Human IL-17: a novel cytokine derived from T cells. J. Immunol. 155, 5483–5486 (1995).

    CAS  PubMed  Google Scholar 

  155. Hollyoake, M., Stuhler, A., Farrell, P., Gordon, J. & Sinclair, A. The normal cell cycle activation program is exploited during the infection of quiescent B lymphocytes by Epstein–Barr virus. Cancer Res. 55, 4784–4787 (1995).

    CAS  PubMed  Google Scholar 

  156. Nicholas, J., Cameron, K. R. & Honess, R. W. Herpesvirus saimiri encodes homologues of G protein-coupled receptors and cyclins. Nature 355, 362–365 (1992). First paper to report the molecular piracy of cellular genes by rhadinoviruses.

    Article  CAS  PubMed  Google Scholar 

  157. Ojala, P. M. et al. The apoptotic v-cyclin–CDK6 complex phosphorylates and inactivates Bcl-2. Nature Cell Biol. 2, 819–825 (2000).

    Article  CAS  PubMed  Google Scholar 

  158. Verschuren, E. W., Klefstrom, J., Evan, G. I. & Jones, N. The oncogenic potential of Kaposi's sarcoma–associated herpesvirus cyclin is exposed by p53 loss in vitro and in vivo. Cancer Cell 2, 229–241 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Jung, J. U., Stager, M. & Desrosiers, R. C. Virus-encoded cyclin. Mol. Cell. Biol. 14, 7235–7244 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Ensser, A. et al. Independence of herpesvirus-induced T cell lymphoma from viral cyclin D homologue. J. Exp. Med. 193, 637–642 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank D. P. Dittmer for critical reading of the manuscript. The author is supported by grants from the American Association for Cancer Research (Gertrude B. Elion Research Award), American Heart Association and NIH/NCI.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez

EBV

HCMv

HHV-6

HHV-7

HSV-1

HSV-2

KSHV

MMP-9

NF-κB

PI3K

VZV

SwissProt

Kaposin

LANA

LMP1

LYN

FURTHER INFORMATION

Blossom Damania's laboratory

Glossary

NEOPLASIA

Abnormal new growth of cells in the process of tumour formation.

PARACRINE

A substance that is secreted by a cell and which acts on neighbouring cells

LYMPHOMA

A general term for cancers that develop in the lymphatic system.

LYMPHOSARCOMA

A malignant lymphoma.

LEUKAEMIA

Cancer of white blood cells.

LYMPHOBLASTOID CELL LINES

Virally infected lymphocytes propagated in tissue culture become enlarged, appear activated, and continuously divide.

PLASMABLASTIC LYMPHOMAS

A form of malignant B-cell lymphoma in which the cells resemble antibody-secreting plasma cells.

MULTICENTRIC CASTLEMAN'S DISEASE

A rare B-cell lymphoproliferative disorder.

PRIMARY EFFUSION LYMPHOMAS

A subset of malignant B-cell lymphomas that localize to body cavities such as the pleura, peritoneum or pericardium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damania, B. Oncogenic γ-herpesviruses: comparison of viral proteins involved in tumorigenesis. Nat Rev Microbiol 2, 656–668 (2004). https://doi.org/10.1038/nrmicro958

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro958

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing