Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human papillomaviruses: diversity, infection and host interactions

Abstract

Human papillomaviruses (HPVs) are an ancient and highly successful group of viruses that have co-evolved with their host to replicate in specific anatomical niches of the stratified epithelia. They replicate persistently in dividing cells, hijack key host cellular processes to manipulate the cellular environment and escape immune detection, and produce virions in terminally differentiated cells that are shed from the host. Some HPVs cause benign, proliferative lesions on the skin and mucosa, and others are associated with the development of cancer. However, most HPVs cause infections that are asymptomatic and inapparent unless the immune system becomes compromised. To date, the genomes of almost 450 distinct HPV types have been isolated and sequenced. In this Review, I explore the diversity, evolution, infectious cycle, host interactions and disease association of HPVs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phylogenetic tree of human papillomaviruses.
Fig. 2: Human papillomavirus infectious cycles in stratified epithelia of different host tissues.
Fig. 3: Genomic organization of human papillomaviruses from different genera.
Fig. 4: Natural course of infection by different human papillomaviruses.
Fig. 5: Mechanisms of carcinogenesis.

Similar content being viewed by others

References

  1. de Villiers, E. M., Fauquet, C., Broker, T. R., Bernard, H. U. & zur Hausen, H. Classification of papillomaviruses. Virology 324, 17–27 (2004).

    PubMed  Google Scholar 

  2. Karamanou, M., Agapitos, E., Kousoulis, A. & Androutsos, G. From the humble wart to HPV: a fascinating story throughout centuries. Oncol. Rev. 4, 133–135 (2010).

    Google Scholar 

  3. zur Hausen, H. Condylomata acuminata and human genital cancer. Cancer Res. 36, 794–794 (1976). This paper describes the association of HPV and cancer that led to the Nobel Prize in 2008.

    CAS  PubMed  Google Scholar 

  4. Antonsson, A., Forslund, O., Ekberg, H., Sterner, G. & Hansson, B. G. The ubiquity and impressive genomic diversity of human skin papillomaviruses suggest a commensalic nature of these viruses. J. Virol. 74, 11636–11641 (2000). This paper is the first indication that HPVs are ubiquitous and commensal.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Antonsson, A., Karanfilovska, S., Lindqvist, P. G. & Hansson, B. G. General acquisition of human papillomavirus infections of skin occurs in early infancy. J. Clin. Microbiol. 41, 2509–2514 (2003).

    PubMed  PubMed Central  Google Scholar 

  6. Tirosh, O. et al. Expanded skin virome in DOCK8-deficient patients. Nat. Med. 24, 1815–1821 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pastrana, D. V. et al. Metagenomic discovery of 83 new human papillomavirus types in patients with immunodeficiency. mSphere 3, e00645-18 (2018). Together with Tirosh et al. (2018), this paper presents the recent discovery of many new HPV types.

    PubMed  PubMed Central  Google Scholar 

  8. de Martel, C., Plummer, M., Vignat, J. & Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer 141, 664–670 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. Lambert, P. F., Munger, K., Rosl, F., Hasche, D. & Tommasino, M. Beta human papillomaviruses and skin cancer. Nature 588, E20–E21 (2020).

    CAS  PubMed  Google Scholar 

  10. Van Doorslaer, K. Evolution of the Papillomaviridae. Virology 445, 11–20 (2013).

    PubMed  Google Scholar 

  11. Shah, S. D., Doorbar, J. & Goldstein, R. A. Analysis of host–parasite incongruence in papillomavirus evolution using importance sampling. Mol. Biol. Evol. 27, 1301–1314 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bravo, I. G. & Felez-Sanchez, M. Papillomaviruses: viral evolution, cancer and evolutionary medicine. Evol. Med. Public Health 2015, 32–51 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Chen, Z. et al. Niche adaptation and viral transmission of human papillomaviruses from archaic hominins to modern humans. PLoS Pathog. 14, e1007352 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Auslander, N., Wolf, Y. I., Shabalina, S. A. & Koonin, E. V. A unique insert in the genomes of high-risk human papillomaviruses with a predicted dual role in conferring oncogenic risk. F1000Res 8, 1000 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Burk, R. D., Harari, A. & Chen, Z. Human papillomavirus genome variants. Virology 445, 232–243 (2013).

    CAS  PubMed  Google Scholar 

  16. Pimenoff, V. N., de Oliveira, C. M. & Bravo, I. G. Transmission between archaic and modern human ancestors during the evolution of the oncogenic human papillomavirus 16. Mol. Biol. Evol. 34, 4–19 (2017).

    CAS  PubMed  Google Scholar 

  17. Hirose, Y. et al. Within-host variations of human papillomavirus reveal APOBEC signature mutagenesis in the viral genome. J. Virol. 92, e00017-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. Moody, C. A. & Laimins, L. A. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog. 5, e1000605 (2009). This paper shows that HPVs activate the DNA damage response to replicate their genomes in differentiated cells.

    PubMed  PubMed Central  Google Scholar 

  19. Egawa, N. & Doorbar, J. The low-risk papillomaviruses. Virus Res. 231, 119–127 (2017).

    CAS  PubMed  Google Scholar 

  20. Rowson, K. E. & Mahy, B. W. Human papova (wart) virus. Bacteriol. Rev. 31, 110–131 (1967). This paper is a fascinating documentation of early human transmission studies.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dreer, M. et al. Interaction of NCOR/SMRT repressor complexes with papillomavirus E8^E2C proteins inhibits viral replication. PLoS Pathog. 12, e1005556 (2016). This paper describes how HPV E8^E2 protein restricts replication of many HPV types.

    PubMed  PubMed Central  Google Scholar 

  22. Zhou, J., Liu, W. J., Peng, S. W., Sun, X. Y. & Frazer, I. Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability. J.Virol. 73, 4972–4982 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hernandez-Alias, H.-A., Benisty, H., Schaefer, M. H. & Serrano, L. Translational adaptation of human viruses to the tissues they infect. Cell 34, 108872 (2021).

    CAS  Google Scholar 

  24. Roberts, J. N. et al. Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat. Med. 13, 857–861 (2007).

    CAS  PubMed  Google Scholar 

  25. Day, P. M. & Schelhaas, M. Concepts of papillomavirus entry into host cells. Curr. Opin. Virol. 4, 24–31 (2014).

    CAS  PubMed  Google Scholar 

  26. Herfs, M., Soong, T. R., Delvenne, P. & Crum, C. P. Deciphering the multifactorial susceptibility of mucosal junction cells to HPV infection and related carcinogenesis. Viruses 9, 85 (2017).

    PubMed Central  Google Scholar 

  27. Quint, K. D. et al. Human Beta-papillomavirus infection and keratinocyte carcinomas. J. Pathol. 235, 342–354 (2015).

    CAS  PubMed  Google Scholar 

  28. Ryser, M. D., Myers, E. R. & Durrett, R. HPV clearance and the neglected role of stochasticity. PLoS Comput. Biol. 11, e1004113 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. Xie, J., Zhang, P., Crite, M. & DiMaio, D. Papillomaviruses go retro. Pathogens 9, 267 (2020).

    CAS  PubMed Central  Google Scholar 

  30. DiGiuseppe, S. et al. Incoming human papillomavirus type 16 genome resides in a vesicular compartment throughout mitosis. Proc. Natl Acad. Sci. USA 113, 6289–6294 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Uhlorn, B. L. et al. Vesicular trafficking permits evasion of cGAS/STING surveillance during initial human papillomavirus infection. PLoS Pathog. 16, e1009028 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pyeon, D., Pearce, S. M., Lank, S. M., Ahlquist, P. & Lambert, P. F. Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog. 5, e1000318 (2009).

    PubMed  PubMed Central  Google Scholar 

  33. Aydin, I. et al. Large scale RNAi reveals the requirement of nuclear envelope breakdown for nuclear import of human papillomaviruses. PLoS Pathog. 10, e1004162 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. Guion, L., Bienkowska-Haba, M., DiGiuseppe, S., Florin, L. & Sapp, M. PML nuclear body-residing proteins sequentially associate with HPV genome after infectious nuclear delivery. PLoS Pathog. 15, e1007590 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Day, P. M., Baker, C. C., Lowy, D. R. & Schiller, J. T. Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. Proc. Natl Acad. Sci. USA 101, 14252–14257 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Corpet, A. et al. PML nuclear bodies and chromatin dynamics: catch me if you can! Nucleic Acids Res. 48, 11890–11912 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hofmann, S., Stubbe, M., Mai, J. & Schreiner, S. Double-edged role of PML nuclear bodies during human adenovirus infection. Virus Res. 295, 198280 (2021).

    CAS  PubMed  Google Scholar 

  38. Ozbun, M. A. Human papillomavirus type 31b infection of human keratinocytes and the onset of early transcription. J. Virol. 76, 11291–11300 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Coursey, T. L. & McBride, A. A. Hitchhiking of viral genomes on cellular chromosomes. Annu. Rev. Virol. 6, 275–296 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. White, E. A. Manipulation of epithelial differentiation by HPV oncoproteins. Viruses 11, 369 (2019).

    CAS  PubMed Central  Google Scholar 

  41. Moore, P. S. & Chang, Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat. Rev. Cancer 10, 878–889 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xue, Y. et al. HPV16 E2 is an immediate early marker of viral infection, preceding E7 expression in precursor structures of cervical carcinoma. Cancer Res. 70, 5316–5325 (2010).

    CAS  PubMed  Google Scholar 

  43. Klumpp, D. J. & Laimins, L. A. Differentiation-induced changes in promoter usage for transcripts encoding the human papillomavirus type 31 replication protein E1. Virology 257, 239–246 (1999).

    CAS  PubMed  Google Scholar 

  44. Johansson, C. & Schwartz, S. Regulation of human papillomavirus gene expression by splicing and polyadenylation. Nat. Rev. Microbiol. 11, 239–251 (2013).

    CAS  PubMed  Google Scholar 

  45. Sakakibara, N., Chen, D. & McBride, A. A. Papillomaviruses use recombination-dependent replication to vegetatively amplify their genomes in differentiated cells. PLoS Pathog. 9, e1003321 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pyeon, D., Lambert, P. F. & Ahlquist, P. Production of infectious human papillomavirus independently of viral replication and epithelial cell differentiation. Proc. Natl Acad. Sci. USA 102, 9311–9316 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Porter, S. S. et al. Histone modifications in papillomavirus virion minichromosomes. mBio 12, e03274-20 (2021).

    PubMed  PubMed Central  Google Scholar 

  48. Bryan, J. T. & Brown, D. R. Transmission of human papillomavirus type 11 infection by desquamated cornified cells. Virology 281, 35–42 (2001).

    CAS  PubMed  Google Scholar 

  49. Egawa, N. et al. Dynamics of papillomavirus in vivo disease formation & susceptibility to high-level disinfection — implications for transmission in clinical settings. EbioMed. 63, 103177 (2021).

    CAS  Google Scholar 

  50. Roden, R. B. S., Lowy, D. R. & Schiller, J. T. Papillomavirus is resistant to desiccation. J. Infect. Dis. 176, 1076–1079 (1997).

    CAS  PubMed  Google Scholar 

  51. Ozbun, M. A. et al. Infectious titres of human papillomaviruses (HPVs) in patient lesions, methodological considerations in evaluating HPV infectivity and implications for the efficacy of high-level disinfectants. EbioMed. 63, 103165 (2021).

    CAS  Google Scholar 

  52. Spurgeon, M. E. et al. A novel in vivo infection model to study papillomavirus-mediated disease of the female reproductive tract. mBio 10, e00180-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Bravo, I. G. & Alonso, A. Mucosal human papillomaviruses encode four different E5 proteins whose chemistry and phylogeny correlate with malignant or benign growth. J. Virol. 78, 13613–13626 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bergvall, M., Melendy, T. & Archambault, J. The E1 proteins. Virology 445, 35–56 (2013).

    CAS  PubMed  Google Scholar 

  55. Wu, S. C. et al. in Human Papillomavirus: Proving and Using a Viral Cause for Cancer (eds Jenkins, D. & Bosch, F. X.) 53–65 (Academic, 2020).

  56. Dreer, M., van de Poel, S. & Stubenrauch, F. Control of viral replication and transcription by the papillomavirus E8^E2 protein. Virus Res. 231, 96–102 (2017).

    CAS  PubMed  Google Scholar 

  57. Doorbar, J., Campbell, D., Grand, R. J. & Gallimore, P. H. Identification of the human papilloma virus-1a E4 gene products. EMBO J. 5, 355–362 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Doorbar, J., Ely, S., Sterling, J., McLean, C. & Crawford, L. Specific interaction between HPV-16 E1–E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature 352, 824–827 (1991).

    CAS  PubMed  Google Scholar 

  59. Doorbar, J. The E4 protein; structure, function and patterns of expression. Virology 445, 80–98 (2013).

    CAS  PubMed  Google Scholar 

  60. DiMaio, D. & Petti, L. M. The E5 proteins. Virology 445, 99–114 (2013).

    CAS  PubMed  Google Scholar 

  61. Scott, M. L. et al. Human papillomavirus 16 E5 inhibits interferon signaling and supports episomal viral maintenance. J. Virol. 94, e01582-19 (2020).

    PubMed  PubMed Central  Google Scholar 

  62. Roman, A. & Munger, K. The papillomavirus E7 proteins. Virology 445, 138–168 (2013).

    CAS  PubMed  Google Scholar 

  63. Brimer, N., Drews, C. M. & Vande Pol, S. B. Association of papillomavirus E6 proteins with either MAML1 or E6AP clusters E6 proteins by structure, function, and evolutionary relatedness. PLoS Pathog. 13, e1006781 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Katzenellenbogen, R. Telomerase induction in HPV infection and oncogenesis. Viruses 9, 180 (2017).

    PubMed Central  Google Scholar 

  65. Brimer, N., Lyons, C., Wallberg, A. E. & Vande Pol, S. B. Cutaneous papillomavirus E6 oncoproteins associate with MAML1 to repress transactivation and NOTCH signaling. Oncogene 31, 4639–4646 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Jackson, S. & Storey, A. E6 proteins from diverse cutaneous HPV types inhibit apoptosis in response to UV damage. Oncogene 19, 592–598 (2000).

    CAS  PubMed  Google Scholar 

  67. Campos, S. K. Subcellular trafficking of the papillomavirus genome during initial infection: the remarkable abilities of minor capsid protein L2. Viruses 9, 370 (2017).

    PubMed Central  Google Scholar 

  68. DiGiuseppe, S., Bienkowska-Haba, M., Guion, L. G. & Sapp, M. Cruising the cellular highways: how human papillomavirus travels from the surface to the nucleus. Virus Res. 231, 1–9 (2017).

    CAS  PubMed  Google Scholar 

  69. Buck, C. B., Day, P. M. & Trus, B. L. The papillomavirus major capsid protein L1. Virology 445, 169–174 (2013).

    CAS  PubMed  Google Scholar 

  70. Hsu, J. Y., Chen, A. C., Keleher, A., McMillan, N. A. & Antonsson, A. Shared and persistent asymptomatic cutaneous human papillomavirus infections in healthy skin. J. Med. Virol. 81, 1444–1449 (2009).

    PubMed  Google Scholar 

  71. Birkeland, S. A. et al. Cancer risk after renal transplantation in the Nordic countries, 1964–1986. Int. J. Cancer 60, 183–189 (1995).

    CAS  PubMed  Google Scholar 

  72. Leiding, J. W. & Holland, S. M. Warts and all: human papillomavirus in primary immunodeficiencies. J. Allergy Clin. Immun. 130, 1030–1048 (2012).

    CAS  PubMed  Google Scholar 

  73. Rollison, D. E., Viarisio, D., Amorrortu, R. P., Gheit, T. & Tommasino, M. An emerging issue in oncogenic virology: the role of beta human papillomavirus types in the development of cutaneous squamous cell carcinoma. J. Virol. 93, e01003-18 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. Strickley, J. D. et al. Immunity to commensal papillomaviruses protects against skin cancer. Nature 575, 519–522 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. de Koning, M. N. et al. High prevalence of cutaneous warts in elementary school children and the ubiquitous presence of wart-associated human papillomavirus on clinically normal skin. Br. J. Dermatol. 172, 196–201 (2015).

    PubMed  Google Scholar 

  76. Egawa, N., Egawa, K., Griffin, H. & Doorbar, J. Human papillomaviruses; epithelial tropisms, and the development of neoplasia. Viruses 7, 3863–3890 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Steben, M. & Garland, S. M. Genital warts. Best Pract. Res. Clin. Obstet. Gynaecol. 28, 1063–1073 (2014).

    PubMed  Google Scholar 

  78. Gravitt, P. E. The known unknowns of HPV natural history. J. Clin. Invest. 121, 4593–4599 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. DiGiuseppe, S., Bienkowska-Haba, M., Guion, L. G. M., Keiffer, T. R. & Sapp, M. Human papillomavirus major capsid protein L1 remains associated with the incoming viral genome throughout the entry process. J. Virol. 91, e00537-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Guion, L. G. & Sapp, M. The role of promyelocytic leukemia nuclear bodies during HPV infection. Front. Cell Infect. Microbiol. 10, 35 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Stepp, W. H., Meyers, J. M. & McBride, A. A. Sp100 provides intrinsic immunity against human papillomavirus infection. mBio 4, e00845-13 (2013).

    PubMed  PubMed Central  Google Scholar 

  82. Florin, L., Schafer, F., Sotlar, K., Streeck, R. E. & Sapp, M. Reorganization of nuclear domain 10 induced by papillomavirus capsid protein l2. Virology 295, 97–107 (2002).

    CAS  PubMed  Google Scholar 

  83. Ferreira, A. R., Ramalho, A. C., Marques, M. & Ribeiro, D. The interplay between antiviral signalling and carcinogenesis in human papillomavirus infections. Cancers (Basel) 12, 646 (2020).

    CAS  Google Scholar 

  84. Roden, R. B. S. & Stern, P. L. Opportunities and challenges for human papillomavirus vaccination in cancer. Nat. Rev. Cancer 18, 240–254 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gravitt, P. E. Unraveling the epidemiology of oral human papillomavirus infection. Ann. Intern. Med. 167, 748–749 (2017).

    PubMed  Google Scholar 

  86. Schiller, J. & Lowy, D. Explanations for the high potency of HPV prophylactic vaccines. Vaccine 36, 4768–4773 (2018). This paper explains why the HPV vaccine is so immunogenic, and successful.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Beziat, V. Human genetic dissection of papillomavirus-driven diseases: new insight into their pathogenesis. Hum. Genet. 139, 919–939 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Venuti, A., Lohse, S., Tommasino, M. & Smola, S. Cross-talk of cutaneous beta human papillomaviruses and the immune system: determinants of disease penetrance. Philos. Trans. R. Soc. London Ser. B, Biol. Sci. 374, 20180287 (2019).

    CAS  Google Scholar 

  89. McDermott, D. H. & Murphy, P. M. WHIM syndrome: immunopathogenesis, treatment and cure strategies. Immunol. Rev. 287, 91–102 (2019).

    CAS  PubMed  Google Scholar 

  90. Beziat, V. et al. Humans with inherited T cell CD28 deficiency are susceptible to skin papillomaviruses but are otherwise healthy. Cell 184, 3812–3828.e30 (2021). This paper identifies deficiency in the T cell co-stimulatory molecule CD28 as responsible for the ‘tree man’ syndrome.

    CAS  PubMed  Google Scholar 

  91. Park, S., Park, J. W., Pitot, H. C. & Lambert, P. F. Loss of dependence on continued expression of the human papillomavirus 16 E7 oncogene in cervical cancers and precancerous lesions arising in fanconi anemia pathway-deficient mice. mBio 7, e00628-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  92. Hammer, A. et al. Whole tissue cervical mapping of HPV infection: molecular evidence for focal latent HPV infection in humans. Papillomavirus Res. 7, 82–87 (2019). This paper presents an analysis of HPV latency in human cervical infection.

    PubMed  PubMed Central  Google Scholar 

  93. Doorbar, J. Latent papillomavirus infections and their regulation. Curr. Opin. Virol. 3, 416–421 (2013).

    CAS  PubMed  Google Scholar 

  94. Amella, C. A. et al. Latent infection induced with cottontail rabbit papillomavirus. A model for human papillomavirus latency. Am. J. Pathol. 144, 1167–1171 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Maglennon, G. A., McIntosh, P. & Doorbar, J. Persistence of viral DNA in the epithelial basal layer suggests a model for papillomavirus latency following immune regression. Virology 414, 153–163 (2011).

    CAS  PubMed  Google Scholar 

  96. Lanfredini, S. et al. HPV8 field cancerization in a transgenic mouse model is due to Lrig1+ keratinocyte stem cell expansion. J. Investig. Dermatol. 137, 2208–2216 (2017).

    CAS  PubMed  Google Scholar 

  97. Viens, L. J. et al. Human papillomavirus-associated cancers — United States, 2008–2012. MMWR 65, 661–666 (2016).

    PubMed  Google Scholar 

  98. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Biological agents. Volume 100 B. A review of human carcinogens. IARC Monogr. Eval. Carcinog. Risks. Hum. 100, 1–441 (2012).

    PubMed Central  Google Scholar 

  99. Howley, P. M. & Pfister, H. J. Beta genus papillomaviruses and skin cancer. Virology 479–480, 290–296 (2015).

    PubMed  Google Scholar 

  100. Herfs, M. et al. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc. Natl Acad. Sci. USA 109, 10516–10521 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang, E. J. et al. Microanatomy of the cervical and anorectal squamocolumnar junctions: a proposed model for anatomical differences in HPV-related cancer risk. Mod. Pathol. 28, 994–1000 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Doorbar, J. & Griffin, H. Refining our understanding of cervical neoplasia and its cellular origins. Papillomavirus Res. 7, 176–179 (2019).

    PubMed  PubMed Central  Google Scholar 

  103. Reich, O. & Regauer, S. Thin HSIL of the cervix: detecting a variant of high-grade squamous intraepithelial lesions with a p16INK4a antibody. Int. J. Gynecol. Pathol. 36, 71–75 (2017).

    CAS  PubMed  Google Scholar 

  104. Roberts, S., Evans, D., Mehanna, H. & Parish, J. L. Modelling human papillomavirus biology in oropharyngeal keratinocytes. Philos. Trans. R. Soc. London B Biol. Sci. 374, 20180289 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Doorbar, J., Egawa, N., Griffin, H., Kranjec, C. & Murakami, I. Human papillomavirus molecular biology and disease association. Rev. Med. Virol. 25 (Suppl 1), 2–23 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Klingelhutz, A. J. & Roman, A. Cellular transformation by human papillomaviruses: lessons learned by comparing high- and low-risk viruses. Virology 424, 77–98 (2012).

    CAS  PubMed  Google Scholar 

  107. Mesri, E. A., Feitelson, M. A. & Munger, K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe 15, 266–282 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Mittal, S. & Banks, L. Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. Mutat. Res. 772, 23–35 (2017).

    CAS  Google Scholar 

  109. McBride, A. A. & Warburton, A. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog. 13, e1006211 (2017).

    PubMed  PubMed Central  Google Scholar 

  110. Tommasino, M. HPV and skin carcinogenesis. Papillomavirus Res. 7, 129–131 (2019).

    PubMed  PubMed Central  Google Scholar 

  111. de Sanjose, S., Brotons, M., LaMontagne, D. S. & Bruni, L. Human papillomavirus vaccine disease impact beyond expectations. Curr. Opin. Virol. 39, 16–22 (2019).

    PubMed  Google Scholar 

  112. Drolet, M. et al. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: updated systematic review and meta-analysis. Lancet 394, 497–509 (2019).

    PubMed  PubMed Central  Google Scholar 

  113. Stern, P. L. & Roden, R. B. Opportunities to improve immune-based prevention of HPV-associated cancers. Papillomavirus Res. 7, 150–153 (2019).

    PubMed  PubMed Central  Google Scholar 

  114. Walling, E. B. et al. Interventions to improve HPV vaccine uptake: a systematic review. Pediatrics https://doi.org/10.1542/peds.2015-3863 (2016).

    Article  PubMed  Google Scholar 

  115. Robles, C. et al. Determinants of human papillomavirus vaccine uptake by adult women attending cervical cancer screening in 9 European countries. Am. J. Prev. Med. https://doi.org/10.1016/j.amepre.2020.08.032 (2020).

    Article  PubMed  Google Scholar 

  116. Van Doorslaer, K. et al. The Papillomavirus Episteme: a major update to the papillomavirus sequence database. Nucleic Acids Res. 45, D499–D506 (2017). This paper describes the Papillomavirus Episteme, the HPV sequence database.

    PubMed  Google Scholar 

  117. Hughes, F. J. & Romanos, M. A. E1 protein of human papillomavirus is a DNA helicase/ATPase. Nucleic Acids Res. 21, 5817–5823 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ustav, M., Ustav, E., Szymanski, P. & Stenlund, A. Identification of the origin of replication of bovine papillomavirus and characterization of the viral origin recognition factor E1. EMBO J. 10, 4321–4329 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Androphy, E. J., Lowy, D. R. & Schiller, J. T. Bovine papillomavirus E2 trans-activating gene product binds to specific sites in papillomavirus DNA. Nature 325, 70–73 (1987).

    CAS  PubMed  Google Scholar 

  120. Melendy, T., Sedman, J. & Stenlund, A. Cellular factors required for papillomavirus DNA replication. J.Virol. 69, 7857–7867 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ustav, M. & Stenlund, A. Transient replication of BPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames. EMBO J. 10, 449–457 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Mohr, I. J. et al. Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science 250, 1694–1699 (1990).

    CAS  PubMed  Google Scholar 

  123. Skiadopoulos, M. H. & McBride, A. A. Bovine papillomavirus type 1 genomes and the E2 transactivator protein are closely associated with mitotic chromatin. J. Virol. 72, 2079–2088 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. McBride, A. A. The papillomavirus E2 proteins. Virology 445, 57–79 (2013).

    CAS  PubMed  Google Scholar 

  125. Piirsoo, M., Ustav, E., Mandel, T., Stenlund, A. & Ustav, M. Cis and trans requirements for stable episomal maintenance of the BPV-1 replicator. EMBO J. 15, 1–11 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Davy, C. E. et al. Identification of a G2 arrest domain in the E1^E4 protein of human papillomavirus type 16. J. Virol. 76, 9806–9818 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Moody, C. A. Impact of replication stress in human papillomavirus pathogenesis. J. Virol. https://doi.org/10.1128/JVI.01012-17 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Huibregtse, J. M., Scheffner, M. & Howley, P. M. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 10, 4129–4135 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Adelstein, D. et al. NCCN Guidelines Insights: head and neck cancers, version 2.2017. J. Natl Compr. Cancer Netw. 15, 761–770 (2017).

    CAS  Google Scholar 

  130. Buck, C. B. et al. Arrangement of L2 within the papillomavirus capsid. J. Virol. 82, 5190–5197 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, J. W. & Roden, R. B. L2, the minor capsid protein of papillomavirus. Virology 445, 175–186 (2013).

    CAS  PubMed  Google Scholar 

  132. Cubie, H. A. Diseases associated with human papillomavirus infection. Virology 445, 21–34 (2013). This paper is a highly cited review of HPV-associated disease.

    CAS  PubMed  Google Scholar 

  133. Moscicki, A. B. et al. The natural history of human papillomavirus infection as measured by repeated DNA testing in adolescent and young women. J. Pediatr. 132, 277–284 (1998).

    CAS  PubMed  Google Scholar 

  134. Gissmann, L., Pfister, H. & Zur Hausen, H. Human papilloma viruses (HPV): characterization of four different isolates. Virology 76, 569–580 (1977).

    CAS  PubMed  Google Scholar 

  135. zur Hausen, H., Meinhof, W., Scheiber, W. & Bornkamm, G. W. Attempts to detect virus-specific DNA in human tumors. I. Nucleic acid hybridizations with complementary RNA of human wart virus. Int. J. Cancer. 13, 650–656 (1974).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the author’s laboratory is funded by the Intramural Research Programs of the National Institute of Allergy and Infectious Diseases (NIAID) (grant number ZIA1000713). The author thanks R. Kissinger (NIAID) for drawing a draft for Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison A. McBride.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks J. Doorbar, S. Graham and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

International Agency for Research on Cancer: https://www.iarc.who.int

International Committee on Taxonomy of Viruses: https://talk.ictvonline.org

International HPV Reference Center: https://ki.se/en/labmed/international-hpv-reference-center

Papillomavirus Episteme: https://pave.niaid.nih.gov

Glossary

Cutaneous epithelium

Layers of stratified keratinocytes that form the outer layer of the skin.

Mucosal epithelium

The moist mucous epithelium that is present at the entrance to body cavities.

Oncogenic HPV types

‘High-risk’ human papillomavirus (HPV) types that are associated with the development of several human cancers.

p53

A tumour suppressor protein that restricts cell growth when cells are damaged; p53 is very often mutated in non-human papillomavirus (non-HPV) cancers.

PDZ-binding domain

The complementary recognition module of PDZ domains, which are interaction modules found in many proteins.

Persistent infection

A long-term viral infection that maintains a reservoir of host cells containing the viral genome, evades immune clearance and often produces virus particles.

Keratinocyte

An epithelial cell of the epidermis that produces keratin.

Basement membrane

A thin, non-cellular layer that lies between the dermis and the epidermis of the skin.

Transformation zone

The junction between squamous and columnar epithelial cells in the cervix, anus and similar tissues. Also known as the squamocolumnar junction or transition zone.

Columnar epithelium

A single-layer, glandular epithelium that lines the endocervix.

Latency

The viral genome is dormant in cells and does not produce virus.

Retromer complex

A protein complex that sorts and traffics proteins between the endosome and trans-Golgi network.

PML nuclear bodies

Small, interferon-inducible nuclear bodies involved in many cell processes; they consist of a scaffold of PML protein but contain many other proteins.

Oncoproteins

Proteins that dysregulate the host cell, and by doing so promote carcinogenesis.

Minichromosomes

Small circular DNA molecules that are assembled in chromatin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McBride, A.A. Human papillomaviruses: diversity, infection and host interactions. Nat Rev Microbiol 20, 95–108 (2022). https://doi.org/10.1038/s41579-021-00617-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-021-00617-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer