Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Bacterial morphogenesis and the enigmatic MreB helix

Abstract

Work over the past decade has highlighted the pivotal role of the actin-like MreB family of proteins in the determination and maintenance of rod cell shape in bacteria. Early images of MreB localization revealed long helical filaments, which were suggestive of a direct role in governing cell wall architecture. However, several more recent, higher-resolution studies have questioned the existence or importance of the helical structures. In this Opinion article, I navigate a path through these conflicting reports, revive the helix model and summarize the key questions that remain to be answered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The helical filament and dynamic patch models for MreB localization.
Figure 2: General interrelationships among cell shape, MreB filaments and the cell wall synthesis machinery.
Figure 3: Revised model for the role of MreB in shape determination.

Similar content being viewed by others

References

  1. Siefert, J. L. & Fox, G. E. Phylogenetic mapping of bacterial morphology. Microbiology 144, 2803–2808 (1998).

    Article  CAS  Google Scholar 

  2. Koch, A. L. Were Gram-positive rods the first bacteria? Trends Microbiol. 11, 166–170 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Errington, J. L-form bacteria, cell walls and the origins of life. Open Biol. 3, 120143 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Abhayawardhane, Y. & Stewart, G. C. Bacillus subtilis possesses a second determinant with extensive sequence similarity to the Escherichia coli mreB morphogene. J. Bacteriol. 177, 765–773 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Doi, M. et al. Determinations of the DNA sequence of the mreB gene and of the gene products of the mre region that function in formation of the rod shape of Escherichia coli cells. J. Bacteriol. 170, 4619–4624 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Levin, P. A., Margolis, P. S., Setlow, P., Losick, R. & Sun, D. Identification of Bacillus subtilis genes for septum placement and shape determination. J. Bacteriol. 174, 6717–6728 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Normark, S. Mutation in Escherichia coli K-12 mediating spherelike envelopes and changes tolerance to ultraviolet irradiation and some antibiotics. J. Bacteriol. 98, 1274–1277 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Varley, A. W. & Stewart, G. C. The divIVB region of the Bacillus subtilis chromosome encodes homologs of Escherichia coli septum placement (MinCD) and cell shape (MreBCD) determinants. J. Bacteriol. 174, 6729–6742 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wachi, M. et al. Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli. J. Bacteriol. 169, 4935–4940 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jones, L. J. F., Carballido-López, R. & Errington, J. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104, 913–922 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Daniel, R. A. & Errington, J. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113, 767–776 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Brown, P. J. et al. Polar growth in the Alphaproteobacterial order Rhizobiales. Proc. Natl Acad. Sci. USA 109, 1697–1701 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Pedro, M. A., Young, K. D., Holtje, J. V. & Schwarz, H. Branching of Escherichia coli cells arises from multiple sites of inert peptidoglycan. J. Bacteriol. 185, 1147–1152 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mobley, H. L., Koch, A. L., Doyle, R. J. & Streips, U. N. Insertion and fate of the cell wall in Bacillus subtilis. J. Bacteriol. 158, 169–179 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pooley, H. M. Turnover and spreading of old wall during surface growth of Bacillus subtilis. J. Bacteriol. 125, 1127–1138 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Divakaruni, A. V., Loo, R. R., Xie, Y., Loo, J. A. & Gober, J. W. The cell-shape protein MreC interacts with extracytoplasmic proteins including cell wall assembly complexes in Caulobacter crescentus. Proc. Natl Acad. Sci. USA 102, 18602–18607 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Divakaruni, A. V., Baida, C., White, C. L. & Gober, J. W. The cell shape proteins MreB and MreC control cell morphogenesis by positioning cell wall synthetic complexes. Mol. Microbiol. 66, 174–188 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Kawai, Y., Daniel, R. A. & Errington, J. Regulation of cell wall morphogenesis in Bacillus subtilis by recruitment of PBP1 to the MreB helix. Mol. Microbiol. 71, 1131–1144 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, T. K. et al. A dynamically assembled cell wall synthesis machinery buffers cell growth. Proc. Natl Acad. Sci. USA 111, 4554–4559 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mohammadi, T. et al. The essential peptidoglycan glycosyltransferase MurG forms a complex with proteins involved in lateral envelope growth as well as with proteins involved in cell division in Escherichia coli. Mol. Microbiol. 65, 1106–1121 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. White, C. L., Kitich, A. & Gober, J. W. Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD. Mol. Microbiol. 76, 616–633 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Favini-Stabile, S., Contreras-Martel, C., Thielens, N. & Dessen, A. MreB and MurG as scaffolds for the cytoplasmic steps of peptidoglycan biosynthesis. Environ. Microbiol. 15, 3218–3228 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Rueff, A. S. et al. An early cytoplasmic step of peptidoglycan synthesis is associated to MreB in Bacillus subtilis. Mol. Microbiol. 91, 348–362 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Formstone, A., Carballido-López, R., Noirot, P., Errington, J. & Scheffers, D. J. Localization and interactions of teichoic acid synthetic enzymes in Bacillus subtilis. J. Bacteriol. 190, 1812–1821 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Kawai, Y. et al. A widespread family of bacterial cell wall assembly proteins. EMBO J. 30, 4931–4941 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carballido-López, R. et al. Actin homolog MreBH governs cell morphogenesis by localization of the cell wall hydrolase LytE. Dev. Cell 11, 399–409 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. Domínguez-Cuevas, P., Porcelli, I., Daniel, R. A. & Errington, J. Differentiated roles for MreB-actin isologues and autolytic enzymes in Bacillus subtilis morphogenesis. Mol. Microbiol. 89, 1084–1098 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Höltje, J. V. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62, 181–203 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vollmer, W. & Bertsche, U. Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim. Biophys. Acta 1778, 1714–1734 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Kruse, T., Bork-Jensen, J. & Gerdes, K. The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol. Microbiol. 55, 78–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Leaver, M. & Errington, J. Roles for MreC and MreD proteins in helical growth of the cylindrical cell wall in Bacillus subtilis. Mol. Microbiol. 57, 1196–1209 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Defeu Soufo, H. J. & Graumann, P. L. Bacillus subtilis actin-like protein MreB influences the positioning of the replication machinery and requires membrane proteins MreC/D and other actin-like proteins for proper localization. BMC Cell Biol. 6, 10 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Shiomi, D., Sakai, M. & Niki, H. Determination of bacterial rod shape by a novel cytoskeletal membrane protein. EMBO J. 27, 3081–3091 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bendezu, F. O., Hale, C. A., Bernhardt, T. G. & de Boer, P. A. RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli. EMBO J. 28, 193–204 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Alyahya, S. A. et al. RodZ, a component of the bacterial core morphogenic apparatus. Proc. Natl Acad. Sci. USA 106, 1239–1244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van den Ent, F., Johnson, C. M., Persons, L., de Boer, P. & Löwe, J. Bacterial actin MreB assembles in complex with cell shape protein RodZ. EMBO J. 29, 1081–1090 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Muchova, K., Chromikova, Z. & Barak, I. Control of Bacillus subtilis cell shape by RodZ. Environ. Microbiol. 15, 3259–3271 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Strahl, H., Burmann, F. & Hamoen, L. W. The actin homologue MreB organizes the bacterial cell membrane. Nature Commun. 5, 3442 (2014).

    Article  CAS  Google Scholar 

  39. Fenton, A. K. & Gerdes, K. Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli. EMBO J. 32, 1953–1965 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Figge, R. M., Divakaruni, A. V. & Gober, J. W. MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol. Microbiol. 51, 1321–1332 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Slovak, P. M., Wadhams, G. H. & Armitage, J. P. Localization of MreB in Rhodobacter sphaeroides under conditions causing changes in cell shape and membrane structure. J. Bacteriol. 187, 54–64 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, S. & Price, C. W. The minCD locus of Bacillus subtilis lacks the minE determinant that provides topological specificity to cell division. Mol. Microbiol. 7, 601–610 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Defeu Soufo, H. J. & Graumann, P. L. Dynamic localization and interaction with other Bacillus subtilis actin-like proteins are important for the function of MreB. Mol. Microbiol. 62, 1340–1356 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Kawai, Y., Asai, K. & Errington, J. Partial functional redundancy of MreB isoforms, MreB, Mbl and MreBH, in cell morphogenesis of Bacillus subtilis. Mol. Microbiol. 73, 719–731 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Bork, P., Sander, C. & Valencia, A. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc. Natl Acad. Sci. USA 89, 7290–7294 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van den Ent, F., Amos, L. A. & Löwe, J. Prokaryotic origin of the actin cytoskeleton. Nature 413, 39–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Esue, O., Cordero, M., Wirtz, D. & Tseng, Y. The assembly of MreB, a prokaryotic homolog of actin. J. Biol. Chem. 280, 2628–2635 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Salje, J., van den Ent, F., de Boer, P. & Löwe, J. Direct membrane binding by bacterial actin MreB. Mol. Cell 43, 478–487 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Van den Ent, F., Izore, T., Bharat, T. A., Johnson, C. M. & Löwe, J. Bacterial actin MreB forms antiparallel double filaments. eLife 3, e02634 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Carballido-López, R. & Errington, J. The bacterial cytoskeleton: in vivo dynamics of the actin-like protein Mbl of Bacillus subtilis. Dev. Cell 4, 19–28 (2003).

    Article  PubMed  Google Scholar 

  51. Defeu Soufo, H. J. & Graumann, P. L. Dynamic movement of actin-like proteins within bacterial cells. EMBO Rep. 5, 789–794 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kruse, T., Møller-Jensen, J., Løbner-Olesen, A. & Gerdes, K. Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. EMBO J. 22, 5283–5292 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gitai, Z., Dye, N. & Shapiro, L. An actin-like gene can determine cell polarity in bacteria. Proc. Natl Acad. Sci. USA 101, 8643–8648 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vats, P. & Rothfield, L. Duplication and segregation of the actin (MreB) cytoskeleton during the prokaryotic cell cycle. Proc. Natl Acad. Sci. USA 104, 17795–17800 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shih, Y. L., Le, T. & Rothfield, L. Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc. Natl Acad. Sci. USA 100, 7865–7870 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Espeli, O., Nurse, P., Levine, C., Lee, C. & Marians, K. J. SetB: an integral membrane protein that affects chromosome segregation in Escherichia coli. Mol. Microbiol. 50, 495–509 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Campo, N. et al. Subcellular sites for bacterial protein export. Mol. Microbiol. 53, 1583–1599 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Foulquier, E., Pompeo, F., Bernadac, A., Espinosa, L. & Galinier, A. The YvcK protein is required for morphogenesis via localization of PBP1 under gluconeogenic growth conditions in Bacillus subtilis. Mol. Microbiol. 80, 309–318 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Tiyanont, K. et al. Imaging peptidoglycan biosynthesis in Bacillus subtilis with fluorescent antibiotics. Proc. Natl Acad. Sci. USA 103, 11033–11038 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Swulius, M. T. et al. Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria. Biochem. Biophys. Res. Commun. 407, 650–655 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Swulius, M. T. & Jensen, G. J. The helical MreB cytoskeleton in Escherichia coli MC1000/pLE7 is an artifact of the N-terminal yellow fluorescent protein tag. J. Bacteriol. 194, 6382–6386 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Garner, E. C. et al. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333, 222–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Domínguez-Escobar, J. et al. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333, 225–228 (2011).

    Article  PubMed  CAS  Google Scholar 

  64. van Teeffelen, S. et al. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc. Natl Acad. Sci. USA 108, 15822–15827 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Strahl, H. & Hamoen, L. W. Membrane potential is important for bacterial cell division. Proc. Natl Acad. Sci. USA 107, 12281–12286 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Reimold, C., Defeu Soufo, H. J., Dempwolff, F. & Graumann, P. L. Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology. Mol. Biol. Cell 24, 2340–2349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kawai, Y., Mercier, R. & Errington, J. Bacterial cell morphogenesis does not require a preexisting template structure. Curr. Biol. 24, 863–867 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schaechter, M., Maaloe, O. & Kjelgaard, N. O. Dependency on medium and temperature on cell size and chemical coposition during balanced growth of Salmonella typhimurium. J. Gen. Microbiol. 19, 592–606 (1958).

    Article  CAS  PubMed  Google Scholar 

  69. Olshausen, P. V. et al. Superresolution imaging of dynamic MreB filaments in B. subtilis—a multiple-motor-driven transport? Biophys. J. 105, 1171–1181 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ursell, T. S. et al. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proc. Natl Acad. Sci. USA 111, E1025–E1034 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, S. & Wingreen, N. S. Cell shape can mediate the spatial organization of the bacterial cytoskeleton. Biophys. J. 104, 541–552 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang, K. C., Mukhopadhyay, R., Wen, B., Gitai, Z. & Wingreen, N. S. Cell shape and cell-wall organization in Gram-negative bacteria. Proc. Natl Acad. Sci. USA 105, 19282–19287 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kuru, E. et al. In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew. Chem. Int. Ed. Engl. 51, 12519–12523 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lebar, M. D. et al. Reconstitution of peptidoglycan cross-linking leads to improved fluorescent probes of cell wall synthesis. J. Am. Chem. Soc. 136, 10874–10877 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Typas, A., Banzhaf, M., Gross, C. A. & Vollmer, W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nature Rev. Microbiol. 10, 123–136 (2012).

    Article  CAS  Google Scholar 

  76. Lovering, A. L., Safadi, S. S. & Strynadka, N. C. Structural perspective of peptidoglycan biosynthesis and assembly. Annu. Rev. Biochem. 81, 451–478 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Cava, F. & de Pedro, M. A. Peptidoglycan plasticity in bacteria: emerging variability of the murein sacculus and their associated biological functions. Curr. Opin. Microbiol. 18, 46–53 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Kandler, O. Cell wall biochemistry in Archaea and its phylogenetic implications. J. Biol. Phys. 20, 165–169 (1994).

    Article  CAS  Google Scholar 

  79. Barreteau, H. et al. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32, 168–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Vollmer, W., Joris, B., Charlier, P. & Foster, S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32, 259–286 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work on cell wall synthesis in the Errington laboratory is supported by grant BB/G015902/1 from the UK Biotechnology and Biological Sciences Research Council. The author thanks W. Vollmer, L. J. Wu and K. Gerdes for helpful discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Errington.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Errington, J. Bacterial morphogenesis and the enigmatic MreB helix. Nat Rev Microbiol 13, 241–248 (2015). https://doi.org/10.1038/nrmicro3398

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3398

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology