Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The many projected futures of dengue

Key Points

  • Owing to the currently expanding range of dengue, several studies have attempted to predict the future global distribution of this vector-borne disease.

  • The models we review here differ in their modelling approach (for example, statistical versus mechanistic), the quality of the disease data that they use and the choice of variables that are used to model disease distribution.

  • We compare the main approaches that have been used to model the future global distribution of dengue and propose a set of minimum criteria for future projections that, by analogy, are applicable to other vector-borne diseases.

  • These criteria include comprehensive data representing the current distribution of the disease, a model proven to accurately predict this distribution, projections for factors that are important in this model when extrapolating it to the future, and quantification of uncertainty introduced by assumptions inherent to these criteria.

Abstract

Dengue is a vector-borne disease that causes a substantial public health burden within its expanding range. Several modelling studies have attempted to predict the future global distribution of dengue. However, the resulting projections are difficult to compare and are sometimes contradictory because the models differ in their approach, in the quality of the disease data that they use and in the choice of variables that drive disease distribution. In this Review, we compare the main approaches that have been used to model the future global distribution of dengue and propose a set of minimum criteria for future projections that, by analogy, are applicable to other vector-borne diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanistic models to project the global distribution of dengue.
Figure 2: Statistical models to project the global distribution of dengue.
Figure 3: Proposed framework for modelling the future distribution of dengue and other vector-borne diseases.

Similar content being viewed by others

References

  1. McMichael, A. J., Woodruff, R. E. & Hales, S. Climate change and human health: present and future risks. Lancet 367, 859–869 (2006).

    Article  PubMed  Google Scholar 

  2. Rogers, D. J. & Randolph, S. E. Climate change and vector-borne diseases. Adv. Parasitol. 62, 345–381 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Kovats, R. S., Campbell-Lendrum, D. H., McMichael, A. J., Woodward, A. & Cox, J. S. Early effects of climate change: do they include changes in vector-borne disease? Phil. Trans. R. Soc. Lond. B 356, 1057–1068 (2001).

    Article  CAS  Google Scholar 

  4. Tanser, F. C., Sharp, B. & le Sueur, D. Potential effect of climate change on malaria transmission in Africa. Lancet 362, 1792–1798 (2003).

    Article  PubMed  Google Scholar 

  5. Patz, J. A. & Olson, S. H. Malaria risk and temperature: influences from global climate change and local land use practices. Proc. Natl Acad. Sci. USA 103, 5635–5636 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van Lieshout, M., Kovats, R. S., Livermore, M. T. J. & Martens, P. Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Glob. Environ. Change 14, 87–99 (2004).

    Article  Google Scholar 

  7. Gething, P. W. et al. Climate change and the global malaria recession. Nature 465, 342–345 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barclay, E. Is climate change affecting dengue in the Americas? Lancet 371, 973–974 (2008).

    Article  PubMed  Google Scholar 

  9. Russell, R. C. et al. Dengue and climate change in Australia: predictions for the future should incorporate knowledge from the past. Med. J. Aust. 190, 265–268 (2009).

    Article  PubMed  Google Scholar 

  10. Banu, S., Hu, W., Hurst, C. & Tong, S. Dengue transmission in the Asia-Pacific region: impact of climate change and socio-environmental factors. Trop. Med. Int. Health 16, 598–607 (2011).

    Article  PubMed  Google Scholar 

  11. Epstein, P. R. West Nile virus and the climate. J. Urban Health 78, 367–371 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Paz, S. The West Nile Virus outbreak in Israel (2000) from a new perspective: the regional impact of climate change. Int. J. Environ. Health Res. 16, 1–13 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Hsu, S. M., Yen, A. M. & Chen, T. H. The impact of climate on Japanese encephalitis. Epidemiol. Infect. 136, 980–987 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Ogden, N. H. et al. Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector Ixodes scapularis. Environ. Health Perspect. 122, 631–638 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Subak, S. Effects of climate on variability in Lyme disease incidence in the northeastern United States. Am. J. Epidemiol. 157, 531–538 (2003).

    Article  PubMed  Google Scholar 

  16. Lindgren, E. & Gustafson, R. Tick-borne encephalitis in Sweden and climate change. Lancet 358, 16–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Sumilo, D. et al. Climate change cannot explain the upsurge of tick-borne encephalitis in the Baltics. PLoS ONE 2, e500 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zeman, P. & Benes, C. A tick-borne encephalitis ceiling in Central Europe has moved upwards during the last 30 years: possible impact of global warming? Int. J. Med. Microbiol. 293, 48–54 (2004).

    PubMed  Google Scholar 

  19. Danielova, V. et al. Tick-borne encephalitis virus expansion to higher altitudes correlated with climate warming. Int. J. Med. Microbiol. 298, 68–72 (2008).

    Article  Google Scholar 

  20. Campbell-Lendrum, D., Bertollini, R., Neira, M., Ebi, K. & McMichael, A. Health and climate change: a roadmap for applied research. Lancet 373, 1663–1665 (2009).

    Article  PubMed  Google Scholar 

  21. Colwell, R. R. et al. Climate change and human health. Science 279, 968–969 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Frumkin, H. & McMichael, A. J. Climate change and public health: thinking, communicating, acting. Am. J. Prev. Med. 35, 403–410 (2008).

    Article  PubMed  Google Scholar 

  23. Frumkin, H., McMichael, A. J. & Hess, J. J. Climate change and the health of the public. Am. J. Prev. Med. 35, 401–402 (2008).

    Article  PubMed  Google Scholar 

  24. Haines, A. & McMichael, A. J. Climate change and health: implications for research, monitoring, and policy. BMJ 315, 870–874 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hales, S., Weinstein, P. & Woodward, A. Public health impacts of global climate change. Rev. Environ. Health 12, 191–199 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. World Health Organization. Atlas of Health and Climate (WHO, 2012).

  27. Tabachnick, W. J. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J. Exp. Biol. 213, 946–954 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Mattar, S., Morales, V., Cassab, A. & Rodriguez-Morales, A. J. Effect of climate variables on dengue incidence in a tropical Caribbean municipality of Colombia, Cerete, 2003–2008. Int. J. Infect. Dis. 17, e358–e359 (2013).

    Article  PubMed  Google Scholar 

  29. Sarfraz, M. S. et al. Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping. BMC Publ. Health 12, 853 (2012).

    Article  Google Scholar 

  30. Gubler, D. J. The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comp. Immunol. Microbiol. Infect. Dis. 27, 319–330 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Phillips, M. L. Dengue reborn: widespread resurgence of a resilient vector. Environ. Health Perspect. 116, A382–A388 (2008).

    PubMed  PubMed Central  Google Scholar 

  32. Gubler, D. J. The global pandemic of dengue/dengue haemorrhagic fever: current status and prospects for the future. Ann. Acad. Med. Singapore 27, 227–234 (1998).

    CAS  PubMed  Google Scholar 

  33. Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jansen, C. C. & Beebe, N. W. The dengue vector Aedes aegypti: what comes next. Microbes Infect. 12, 272–279 (2010).

    Article  PubMed  Google Scholar 

  35. Rezza, G. Aedes albopictus and the reemergence of dengue. BMC Publ. Health 12, 72 (2012).

    Article  Google Scholar 

  36. Richards, S. L., Anderson, S. L. & Alto, B. W. Vector competence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) for dengue virus in the Florida Keys. J. Med. Entomol. 49, 942–946 (2012).

    Article  PubMed  Google Scholar 

  37. Lambrechts, L., Scott, T. W. & Gubler, D. J. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl. Trop. Dis. 4, e646 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wilson, M. E. in Water and Sanitation Related Diseases and the Environment: Challenges, Interventions, and Preventive Measures (ed. Selendy, J. M. H.) Ch. 31 (Wiley-Blackwell, 2011).

    Google Scholar 

  39. Tatem, A. J., Rogers, D. J. & Hay, S. I. Global transport networks and infectious disease spread. Adv. Parasitol. 62, 293–343 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Messina, J. P. et al. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol. 22, 138–146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brady, O. J. et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gubler, D. J. Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop. Med. Health 39, 3–11 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Murray, N. E., Quam, M. B. & Wilder-Smith, A. Epidemiology of dengue: past, present and future prospects. Clin. Epidemiol. 5, 299–309 (2013).

    PubMed  PubMed Central  Google Scholar 

  45. Senior, K. Vector-borne diseases threaten Europe. Lancet Infect. Dis. 8, 531–532 (2008).

    Article  PubMed  Google Scholar 

  46. Monath, T. P. Dengue: the risk to developed and developing countries. Proc. Natl Acad. Sci. USA 91, 2395–2400 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reiter, P. Climate change and mosquito-borne disease. Environ. Health Perspect. 109 (Suppl. 1), 141–161 (2001).

    PubMed  PubMed Central  Google Scholar 

  48. Erickson, R. A. et al. Potential impacts of climate change on the ecology of dengue and its mosquito vector the Asian tiger mosquito (Aedes albopictus). Environ. Res. Lett. 7, 034003 (2012).

    Article  Google Scholar 

  49. Erickson, R. A., Presley, S. M., Allen, L. J. S., Long, K. R. & Cox, S. B. A dengue model with a dynamic Aedes albopictus vector population. Ecol. Model. 221, 2899–2908 (2010).

    Article  Google Scholar 

  50. Ocampo, C. B., Mina, N. J., Carabali, M., Alexander, N. & Osorio, L. Reduction in dengue cases observed during mass control of Aedes in street catch basins in an endemic urban area in Colombia. Acta Trop. 132, 15–22 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Soper, F. L. The 1964 status of Aedes aegypti eradication and yellow fever in the Americas. Am. J. Trop. Med. Hyg. 14, 887–891 (1965).

    Article  CAS  PubMed  Google Scholar 

  52. Khormi, H. M. & Kumar, L. Assessing the risk for dengue fever based on socioeconomic and environmental variables in a geographical information system environment. Geospat. Health 6, 171–176 (2012).

    Article  PubMed  Google Scholar 

  53. Khormi, H. M. & Kumar, L. Modeling dengue fever risk based on socioeconomic parameters, nationality and age groups: GIS and remote sensing based case study. Sci. Total Environ. 409, 4713–4719 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Mondini, A. & Chiaravalloti-Neto, F. Spatial correlation of incidence of dengue with socioeconomic, demographic and environmental variables in a Brazilian city. Sci. Total Environ. 393, 241–248 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Reiter, P. et al. Texas lifestyle limits transmission of dengue virus. Emerg. Infect. Dis. 9, 86–89 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ramos, M. M. et al. Epidemic dengue and dengue hemorrhagic fever at the Texas–Mexico border: results of a household-based seroepidemiologic survey, December 2005. Am. J. Trop. Med. Hyg. 78, 364–369 (2008).

    Article  PubMed  Google Scholar 

  57. Williams, C. R., Bader, C. A., Kearney, M. R., Ritchie, S. A. & Russell, R. C. The extinction of dengue through natural vulnerability of its vectors. PLoS Negl. Trop. Dis. 4, e922 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gething, P. W. et al. A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl. Trop. Dis. 6, e1814 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gething, P. W. et al. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar. J. 10, 378 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Brooker, S., Kabatereine, N. B., Gyapong, J. O., Stothard, J. R. & Utzinger, J. Rapid mapping of schistosomiasis and other neglected tropical diseases in the context of integrated control programmes in Africa. Parasitology 136, 1707–1718 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Fichet-Calvet, E. & Rogers, D. J. Risk maps of Lassa fever in West Africa. PLoS Negl. Trop. Dis. 3, e388 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pigott, D. M. et al. Global distribution maps of the leishmaniases. eLife 3, e02851 (2014).

    Article  PubMed Central  Google Scholar 

  63. Patz, J. A., Martens, W. J., Focks, D. A. & Jetten, T. H. Dengue fever epidemic potential as projected by general circulation models of global climate change. Environ. Health Perspect. 106, 147–153 (1998). This study describes a mechanistic model that uses temperature projections from specific global climate models from the IPCC to project the global distribution of dengue in 2050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martens, W. J. M., Jetten, T. H. & Focks, D. A. Sensitivity of malaria, schistosomiasis and dengue to global warming. Clim. Change 35, 145–156 (1997). This study describes a mechanistic model that compares the results of projections for three vector-borne diseases based on climate change scenarios.

    Article  Google Scholar 

  65. Jetten, T. H. & Focks, D. A. Potential changes in the distribution of dengue transmission under climate warming. Am. J. Trop. Med. Hyg. 57, 285–297 (1997). This study describes a mechanistic model that applies projected scenarios of 2 °C and 4 °C rises in temperature to present-day scenarios.

    Article  CAS  PubMed  Google Scholar 

  66. Astrom, C. et al. Potential distribution of dengue fever under scenarios of climate change and economic development. Ecohealth 9, 448–454 (2012). This study describes a statistical model that uses present-day and projected estimates for annual mean vapour pressure and GDP estimates to map baseline and future dengue transmission.

    Article  PubMed  Google Scholar 

  67. Hales, S., de Wet, N., Maindonald, J. & Woodward, A. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360, 830–834 (2002). This study describes a statistical model that uses present-day and projected estimates for annual mean vapour pressure to map baseline and future dengue transmission.

    Article  PubMed  Google Scholar 

  68. Rogers, D. J. & Sedda, L. Statistical models for spatially explicit biological data. Parasitology 139, 1852–1869 (2012).

    Article  PubMed  Google Scholar 

  69. Dormann, C. F. et al. Correlation and process in species distribution models: bridging a dichotomy. J. Biogeogr. 39, 2119–2131 (2012).

    Article  Google Scholar 

  70. Chan, M. & Johansson, M. A. The incubation periods of dengue viruses. PLoS ONE 7, e50972 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Brady, O. J. et al. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasit. Vectors 6, 351 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Brady, O. J. et al. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasit. Vectors 7, 338 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Waldock, J. et al. The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology. Pathog. Glob. Health 107, 224–241 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Focks, D. A., Haile, D. G., Daniels, E. & Mount, G. A. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development. J. Med. Entomol. 30, 1003–1017 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Kearney, M., Porter, W. P., Williams, C., Ritchie, S. & Hoffmann, A. A. Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito Aedes aegypti in Australia. Funct. Ecol. 23, 528–538 (2009).

    Article  Google Scholar 

  76. Smith, D. L. et al. Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog. 8, e1002588 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Smith, D. L. et al. Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Trans. R. Soc. Trop. Med. Hyg. 108, 185–197 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gloria-Soria, A., Brown, J. E., Kramer, V., Hardstone Yoshimizu, M. & Powell, J. R. Origin of the dengue fever mosquito, Aedes aegypti, in California. PLoS Negl. Trop. Dis. 8, e3029 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nagao, Y. & Koelle, K. Decreases in dengue transmission may act to increase the incidence of dengue hemorrhagic fever. Proc. Natl Acad. Sci. USA 105, 2238–2243 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chowell, G., Cazelles, B., Broutin, H. & Munayco, C. V. The influence of geographic and climate factors on the timing of dengue epidemics in Peru, 1994–2008. BMC Infect. Dis. 11, 164 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jury, M. R. Climate influence on dengue epidemics in Puerto Rico. Int. J. Environ. Health Res. 18, 323–334 (2008).

    Article  PubMed  Google Scholar 

  82. Johansson, M. A., Dominici, F. & Glass, G. E. Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl. Trop. Dis. 3, e382 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hii, Y. L. et al. Climate variability and increase in intensity and magnitude of dengue incidence in Singapore. Glob Health Action http://dx.doi.org/10.3402/gha.v2i0.2036 (2009).

  84. Chen, M. J. et al. Effects of extreme precipitation to the distribution of infectious diseases in Taiwan, 1994–2008. PLoS ONE 7, e34651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sankari, T., Hoti, S. L., Singh, T. B. & Shanmugavel, J. Outbreak of dengue virus serotype 2 (DENV-2) of Cambodian origin in Manipur, India — association with meteorological factors. Indian J. Med. Res. 136, 649–655 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Descloux, E. et al. Climate-based models for understanding and forecasting dengue epidemics. PLoS Negl. Trop. Dis. 6, e1470 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chandy, S., Ramanathan, K., Manoharan, A., Mathai, D. & Baruah, K. Assessing effect of climate on the incidence of dengue in Tamil Nadu. Indian J. Med. Microbiol. 31, 283–286 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Yasuoka, J. & Levins, R. Ecology of vector mosquitoes in Sri Lanka: suggestions for future mosquito control in rice ecosystems. Southeast Asian J. Trop. Med. Publ. Health 38, 646–657 (2007).

    Google Scholar 

  89. Lu, L. et al. Time series analysis of dengue fever and weather in Guangzhou, China. BMC Publ. Health 9, 395 (2009).

    Article  CAS  Google Scholar 

  90. Yang, T. C. et al. Epidemiology and vector efficiency during a dengue fever outbreak in Cixi, Zhejiang Province, China. J. Vector Ecol. 34, 148–154 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Gharbi, M. et al. Time series analysis of dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as predictors. BMC Infect. Dis. 11, 166 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kamgang, B. et al. Geographic and ecological distribution of the dengue and chikungunya virus vectors Aedes aegypti and Aedes albopictus in three major Cameroonian towns. Med. Vet. Entomol. 24, 132–141 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Troyo, A., Fuller, D. O., Calderon-Arguedas, O., Solano, M. E. & Beier, J. C. Urban structure and dengue fever in Puntarenas, Costa Rica. Singap. J. Trop. Geogr. 30, 265–282 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Smith, J., Amador, M. & Barrera, R. Seasonal and habitat effects on dengue and West Nile virus vectors in San Juan, Puerto Rico. J. Am. Mosq. Control Assoc. 25, 38–46 (2009).

    Article  PubMed  Google Scholar 

  95. Estallo, E. L. et al. Effectiveness of normalized difference water index in modelling Aedes aegypti house index. Int. J. Remote Sens. 33, 4254–4265 (2012).

    Article  Google Scholar 

  96. Tourre, Y. M., Jarlan, L., Lacaux, J. P., Rotela, C. H. & Lafaye, M. Spatio-temporal variability of NDVI-precipitation over southernmost South America: possible linkages between climate signals and epidemics. Environ. Res. Lett. 3, 044008 (2008).

    Article  Google Scholar 

  97. Schreiber, K. V. An investigation of relationships between climate and dengue using a water budgeting technique. Int. J. Biometeorol. 45, 81–89 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Cheng, S. Q., Kalkstein, L. S., Focks, D. A. & Nnaji, A. New procedures to estimate water temperatures and water depths for application in climate-dengue modeling. J. Med. Entomol. 35, 646–652 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Rios-Velasquez, C. M. et al. Distribution of dengue vectors in neighborhoods with different urbanization types of Manaus, state of Amazonas, Brazil. Mem. Inst. Oswaldo Cruz 102, 617–623 (2007).

    Article  PubMed  Google Scholar 

  100. Padmanabha, H., Durham, D., Correa, F., Diuk-Wasser, M. & Galvani, A. The interactive roles of Aedes aegypti super-production and human density in dengue transmission. PLoS Negl. Trop. Dis. 6, e1799 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hsueh, Y. H., Lee, J. & Beltz, L. Spatio-temporal patterns of dengue fever cases in Kaoshiung City, Taiwan, 2003–2008. Appl. Geogr. 34, 587–594 (2012).

    Article  Google Scholar 

  102. Hassan, H., Shohaimi, S. & Hashim, N. R. Risk mapping of dengue in Selangor and Kuala Lumpur, Malaysia. Geospat. Health 7, 21–25 (2012).

    Article  PubMed  Google Scholar 

  103. Schmidt, W. P. et al. Population density, water supply, and the risk of dengue fever in Vietnam: cohort study and spatial analysis. PLoS Med. 8, e1001082 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lin, C. H. & Wen, T. H. Using geographically weighted regression (GWR) to explore spatial varying relationships of immature mosquitoes and human densities with the incidence of dengue. Int. J. Environ. Res. Publ. Health 8, 2798–2815 (2011).

    Article  Google Scholar 

  105. Teixeira, T. R. D. & Medronho, R. D. Socio-demographic factors and the dengue fever epidemic in 2002 in the state of Rio de Janeiro, Brazil. Cad. Saude Publ. 24, 2160–2170 (in Portuguese) (2008).

    Article  Google Scholar 

  106. Kienberger, S., Hagenlocher, M., Delmelle, E. & Casas, I. A. WebGIS tool for visualizing and exploring socioeconomic vulnerability to dengue fever in Cali, Colombia. Geospat. Health 8, 313–316 (2013).

    Article  PubMed  Google Scholar 

  107. Hagenlocher, M., Delmelle, E., Casas, I. & Kienberger, S. Assessing socioeconomic vulnerability to dengue fever in Cali, Colombia: statistical versus expert-based modeling. Int. J. Health Geogr. 12, 36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Syed, M. et al. Knowledge, attitudes and practices regarding dengue fever among adults of high and low socioeconomic groups. J. Pak. Med. Assoc. 60, 243–247 (2010).

    PubMed  Google Scholar 

  109. Almeida, M. C. D., Caiaffa, W. T., Assuncao, R. M. & Proietti, F. A. Spatial vulnerability to dengue in a Brazilian urban area during a 7-year surveillance. J. Urban Health 84, 334–345 (2007).

    Article  Google Scholar 

  110. Banerjee, S., Aditya, G. & Saha, G. K. Household disposables as breeding habitats of dengue vectors: linking wastes and public health. Waste Manag. 33, 233–239 (2013).

    Article  PubMed  Google Scholar 

  111. Caprara, A. et al. Irregular water supply, household usage and dengue: a bio-social study in the Brazilian northeast. Cad. Saude Publ. 25, S125–S136 (2009).

    Article  Google Scholar 

  112. Tran, H. P. et al. Householder perspectives and preferences on water storage and use, with reference to dengue, in the Mekong Delta, southern Vietnam. Int. Health 2, 136–142 (2010).

    Article  PubMed  Google Scholar 

  113. Padmanabha, H., Soto, E., Mosquera, M., Lord, C. C. & Lounibos, L. P. Ecological links between water storage behaviors and Aedes aegypti production: implications for dengue vector control in variable climates. Ecohealth 7, 78–90 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Kusumawathie, P. H., Yapabandarab, A. M., Jayasooriya, G. A. & Walisinghe, C. Effectiveness of net covers on water storage tanks for the control of dengue vectors in Sri Lanka. J. Vector Borne Dis. 46, 160–163 (2009).

    CAS  PubMed  Google Scholar 

  115. Gething, P. W. et al. Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasit. Vectors 4, 92 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hay, S. I. et al. Global mapping of infectious disease. Phil. Trans. R. Soc. B 368, 20120250 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Gotway, C. A. & Young, L. J. Combining incompatible spatial data. J. Am. Stat. Assoc. 97, 632–648 (2002).

    Article  Google Scholar 

  118. Messina, J. P. et al. A global compendium of human dengue virus occurrence. Sci. Data 1, 140004 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol. Evol. 3, 327–338 (2012).

    Article  Google Scholar 

  120. Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    Article  PubMed  Google Scholar 

  121. Pearce, J. L. & Boyce, M. S. Modelling distribution and abundance with presence-only data. J. Appl. Ecol. 43, 405–412 (2006).

    Article  Google Scholar 

  122. Hijmans, R. J. Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93, 679–688 (2012).

    Article  PubMed  Google Scholar 

  123. Seebens, H., Gastner, M. T. & Blasius, B. The risk of marine bioinvasion caused by global shipping. Ecol. Lett. 16, 782–790 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Gould, E. A. & Higgs, S. Impact of climate change and other factors on emerging arbovirus diseases. Trans. R. Soc. Trop. Med. Hyg. 103, 109–121 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Weaver, S. C. & Reisen, W. K. Present and future arboviral threats. Antiviral Res. 85, 328–345 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Solomon, S. et al. (eds) Climate Change 2007: The Physical Science Basis (Cambridge Univ. Press, 2007).

    Google Scholar 

Download references

Acknowledgements

J.P.M., G.R.W.W., T.W.S. and S.I.H. receive funding from, and O.J.B. acknowledges the support of, the International Research Consortium on Dengue Risk Assessment Management and Surveillance (IDAMS; European Commission 7th Framework Programme (21803)). O.J.B. is funded by a Biotechnology and Biological Sciences Research Council (BBSRC) studentship. D.M.P. is funded by a Sir Richard Southwood Graduate Scholarship from the Department of Zoology at the University of Oxford, UK. N.G. is funded by a grant from the Bill & Melinda Gates Foundation (OPP1053338). M.U.G.K. is funded by the German Academic Exchange Service (DAAD) through a graduate scholarship. T.W.S. acknowledges funding from the Bill & Melinda Gates Foundation (OPP52250), the Innovative Vector Control Consortium and the US National Institutes of Health (NIH; R01-AI069341, R01-AI091980, R01-GM08322 and P01-AI098670). S.I.H. is funded by a Senior Research Fellowship from the Wellcome Trust (095066). T.W.S., D.L.S. and S.I.H. also acknowledge funding support from the Research and Policy for Infectious Disease Dynamics (RAPIDD) Program of the Science and Technology Directorate, the US Department of Homeland Security and the Fogarty International Center, NIH. Funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. All authors contributed to the writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane P. Messina.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Hyper-endemicity

A term used to indicate that a disease is constantly present in a location, with high incidence and/or prevalence rates and affecting all age groups. For dengue, co-circulation of all four serotypes in a location can be an indicator of hyper-endemic transmission.

Covariates

Variables such as temperature or rainfall that may be used to predict disease occurrence. These may be direct or indirect in terms of the hypothesized relationship with the outcome.

Epidemic potential

The reciprocal of the critical density threshold (that is, the average number of adult female mosquitoes per person required for one infectious human case of dengue to give rise to a new one in a susceptible human population). A greater epidemic potential in a location indicates that the climate conditions in that location are such that fewer vectors are needed to effectively spread a vector-borne disease such as dengue.

General circulation models

Mathematical models of the general circulation of the atmosphere or ocean, which constitute an important component of most global climate models. These models can be applied at a variety of temporal scales and used to project climate conditions up to 100 years in the future.

Logistic regression

A probabilistic statistical model that is used to predict a binary response (for example, presence versus absence of a disease) based on a linear combination of hypothesized predictor variables or covariates.

Annual mean vapour pressure

In meteorology, this refers to the partial pressure of water vapour in the atmosphere as measured (or estimated) and averaged over 1 year. It has been used as a measure of humidity in dengue modelling.

Parsimonious model selection

When the goodness of fit of a statistical model is weighted against its complexity when choosing a final model. More-parsimonious models are less complex, with fewer covariates chosen for inclusion. This makes them generally more interpretable and more straightforward to extrapolate into different environments.

Generalized additive models

Statistical models relating a response variable to a set of covariates, modelling the response as the sum of nonlinear relationships with different covariates. The response variable is assigned a specific distribution and a link function used to relate it to the sum of covariate relationships, as in a generalized linear model.

Gross domestic product (GDP) per capita

The value of all final goods and services produced within a given year in a country, divided by the average or mid-year population in the country for that year. This metric is often used as an indicator of the overall standard of living in a country, but it does not convey variation in this standard of living across populations or locations within the country.

Uncertainty estimates

A measure of how uncertain each prediction from a model is. This acts as a quantitative estimate of how well the model is able to make predictions. When predictions are made across a spatial grid, uncertainty estimates can be made for each cell. This enables a map of uncertainty to be produced, showing places where the model performs relatively better or worse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messina, J., Brady, O., Pigott, D. et al. The many projected futures of dengue. Nat Rev Microbiol 13, 230–239 (2015). https://doi.org/10.1038/nrmicro3430

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3430

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology