Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall

Abstract

In budding yeast, the neck that connects the mother and daughter cell is the site of essential functions such as organelle trafficking, septum formation and cytokinesis. Therefore, the morphology of this region, which depends on the surrounding cell wall, must be maintained throughout the cell cycle. Growth at the neck is prevented, redundantly, by a septin ring inside the cell membrane and a chitin ring in the cell wall. Here, we describe recent work supporting the hypothesis that attachment of the chitin ring, which forms at the mother–bud neck during budding, to β-1,3-glucan in the cell wall is necessary to stop growth at the neck. Thus, in this scenario, chemistry controls morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The yeast cell cycle and chitin.
Figure 2: Structure and synthesis of the cell wall in Saccharomyces cerevisiae.
Figure 3: Proposed assembly of the yeast cell wall.
Figure 4: The effect of inhibiting chitin ring formation with nikkomycin Z.
Figure 5: How chitin addition to β-1,3-glucan stops cell wall growth.
Figure 6: Control of morphogenesis at the bud neck.

Similar content being viewed by others

References

  1. Cabib, E., Roh, D.-H., Schmidt, M., Crotti, L. B. & Varma, A. The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J. Biol. Chem. 276, 19679–19682 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Cid, V. J. et al. Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol. Rev. 59, 345–386 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bi, E. & Park. H. O. Cell polarization and cytokinesis in budding yeast. Genetics 191, 347–387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cabib, E. The septation apparatus, a chitin-requiring machine in budding yeast. Arch. Biochem. Biophys. 426, 201–207 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Wloka, C. & Bi, E. Mechanisms of cytokinesis in budding yeast. Cytoskeleton 69, 710–726 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Hayashibe, M. & Katohda, S. Initiation of budding and chitin ring. J. Gen. Appl. Microbiol. 101, 295–301 (1973).

    Google Scholar 

  7. Cabib, E. & Bowers, B. Timing and function of chitin synthesis in yeast. J. Bacteriol. 124, 1586–1593 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shaw, J. A. et al. The function of chitin synthase 2 and 3 in the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 114, 111–123 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Molano, J., Bowers, B. & Cabib, E. Distribution of chitin in the yeast cell wall. An ultrastructural and chemical study. J. Cell Biol. 85, 199–212 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Gladfelter, A., Pringle, J. R. & Lew, D. J. The septin cortex at the yeast mother–bud neck. Curr. Opin. Microbiol. 4, 681–689 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Vrabioiu, A. M. & Mitchison, T. J. Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature 443, 466–469 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Lippincott, J. & Li, R. Sequential assembly of myosin II, an IQGAP-like protein, and filamentous actin to a ring structure involved in budding yeast cytokinesis. J. Cell Biol. 140, 355–366 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmidt, M., Bowers, B., Varma, A., Roh, D.-H. & Cabib, E. In budding yeast, contraction of the actomyosin ring and formation of the primary septum at cytokinesis depend on each other. J. Cell Sci. 115, 293–302 (2001).

    Google Scholar 

  14. Kuranda, M. J. & Robbins, P. W. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J. Biol. Chem. 266, 19758–19767 (1991).

    CAS  PubMed  Google Scholar 

  15. Zlotnik, H., Fernández, M. P., Bowers, B. & Cabib, E. Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. J. Bacteriol. 159, 1018–1026 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kollár, R., Petráková, E., Ashwell, G., Robbins, P. W. & Cabib, E. Architecture of the yeast cell wall. The linkage between chitin and β(1→3)glucan. J. Biol. Chem. 270, 1170–1178 (1995).

    Article  PubMed  Google Scholar 

  17. Kapteyn, J. C. et al. Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked β-1,3-/β-1,6-glucan heteropolymer. Glycobiology 6, 337–345 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Kollár, R. et al. Architecture of the yeast cell wall. β(1→6)glucan interconnects mannoprotein, β(1→3)glucan and chitin. J. Biol. Chem. 272, 17762–17775 (1997).

    Article  PubMed  Google Scholar 

  19. Mrsa, V. & Tanner, W. Role of NaOH-extractable cell wall proteins Ccw5p, Ccw6p, Ccw7p and Ccw8p (members of the Pir protein family) in stability of the Saccharomyces cerevisiae cell wall. Yeast 15, 813–820 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Mrsa, V., Seidl, T., Gentzch, M. & Tanner, W. Specific labeling of cell wall proteins by biotinylation. Identification of four covalently linked O-mannosylated proteins of Saccharomyces cerevisiae. Yeast 13, 1145–1154 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Ecker, M., Deutzmann, R., Lehle, L., Mrsa, V. & Tanner, W. Pir proteins of Saccharomyces cerevisiae are attached to β-1,3-glucan by a new protein-carbohydrate linkage. J. Biol. Chem. 281, 11523–11529 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Dranginis, A. M., Rauceo, J. M., Coronado, J. E. & Lipke, P. N. A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol. Mol. Biol. Rev. 71, 282–294 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cappellaro, C., Baldermann, C., Rachel, R. & Tanner, W. Mating type-specific cell-cell recognition of Saccharomyces cerevisiae: cell wall attachment and active sites of a- and alpha-agglutinin. EMBO J. 13, 4737–4744 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mouyna, I. et al. Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J. Biol. Chem. 275, 14882–14889 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Rodríguez-Peña, J. M., Cid, V. J., Arroyo, J. & Nombela, C. A novel family of cell wall-related proteins regulated differently during the yeast life cycle. Mol. Cell. Biol. 20, 3245–3255 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cabib, E., Blanco, N., Grau, C., Rodríguez-Peña, J. M. & Arroyo, J. Crh1p and Crh2p are required for the cross-linking of chitin to β(1-6)glucan in the Saccharomyces cerevisiae cell wall. Mol. Microbiol. 63, 921–935 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Ragni, E., Sipiczki, M. & Strahl, S. Characterization of Ccw12p, a major key player in cell wall stability of Saccharomyces cerevisiae. Yeast 24, 309–319 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Orlean, P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192, 775–818 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Durán, A., Bowers, B. & Cabib, E. Chitin synthetase zymogen is attached to the yeast plasma membrane. Proc. Natl Acad. Sci. USA 72, 3952–3955 (1975).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shematek, E. M., Braatz, J. A. & Cabib, E. Biosynthesis of the yeast cell wall. Preparation and properties of β-(1→3)glucan synthetase. J. Biol. Chem. 255, 888–894 (1980).

    CAS  PubMed  Google Scholar 

  31. Cabib, E., Bowers, B. & Roberts, R. L. Vectorial synthesis of a polysaccharide by isolated plasma membranes. Proc. Natl Acad. Sci. USA 80, 3318–3321 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lesage, G. & Bussey, H. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70, 317–343 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cabib, E., Bowers, B., Sburlati, A. & Silverman, S. J. Fungal wall synthesis. the construction of a biological structure. Microbiol. Sci. 5, 370–375 (1988).

    CAS  PubMed  Google Scholar 

  34. Kreger, D. R. & Kopecká, M. On the nature and formation of fibrillar nets produced by protoplasts of Saccharomyces cerevisiae in liquid media: an electron microscopic, X-ray diffraction and chemical study. J. Gen. Microbiol. 92, 207–220 (1975).

    Article  Google Scholar 

  35. Roh, D.-H., Bowers, B., Riezman, H. & Cabib, E. Rho1 mutations specific for regulation of β(1→3)glucan synthesis and the order of assembly of the yeast cell wall. Mol. Microbiol. 44, 1167–1183 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Merlini, L. & Piatti, S. The mother-bud neck as a signaling platform for the coordination between spindle position and cytokinesis in budding yeast. Biol. Chem. 392, 805–812 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Pruyne, D., Gao, L., Bi, E. & Bretscher, A. Stable and dynamic axes of polarity use distinct formin isoforms in budding yeast. Mol. Biol. Cell 15, 4971–4989 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schmidt, M., Varma, A., Drgon, T., Bowers, B. & Cabib, E. Septins, under Cla4p regulation, and the chitin ring are required for neck integrity in budding yeast. Mol. Biol. Cell 14, 2128–2141 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Versele, M. & Thorner, J. Septin collar formation in budding yeast requires GTP binding and direct phosphorylation by the PAK, Cla4p. J. Cell Biol. 164, 701–715 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Caudron, F. & Barral, Y. Septins and the lateral compartmentation of eukaryotic membranes. Dev. Cell 16, 493–506 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Gladfelter, A. S., Bose, I., Zyla, T. R., Bardes, E. S. G. & Lew, D. J. Septin ring assembly involves cycles of GTP loading and hydrolysis by Cdc42p. J. Cell Biol. 156, 315–326 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cabib, E. & Durán, A. Synthase III-dependent chitin is bound to different acceptors depending on location on the cell wall of budding yeast. J. Biol. Chem. 280, 9170–9179 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Cabib, E., Blanco, N. & Arroyo, J. Presence of a large β(1-3)glucan linked to chitin at the Saccharomyces cerevisiae mother-bud neck suggests involvement in localized growth control. Eukaryot. Cell 11, 388–400 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Manners, D. J., Masson, A. J. & Patterson, J. C. The structure of a β-(1→3)-D-glucan from yeast cell walls. Biochem. J. 135, 19–30 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kopecká, M., Phaff, H. G. & Fleet, G. H. Demonstration of a fibrillar component in the cell wall of the yeast Saccharomyces cerevisiae. J. Cell Biol. 62, 66–76 (1974).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hartland, R. P. et al. A novel β-(1-3)-glucanosyltransferase from the cell wall of Aspergillus fumigatus. J. Biol. Chem. 271, 26843–26849 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Popolo, L. & Vai, M. The Gas1 glycoprotein, a putative wall polymer cross-linker. Biochim. Biophys. Acta 1426, 385–400 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Popolo, L., Gilardelli, D., Bonfante, P. & Vai, M. Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1Δ mutant of Saccharomyces cerevisiae. J. Bacteriol. 179, 463–469 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yin, Q. Y. et al. Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls. Identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. J. Biol. Chem. 280, 20894–20901 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Cabib, E. Two novel techniques for determination of polysaccharide cross-links show that Crh1p and Crh2p attach chitin to both β(1-6)- and β(1-3)glucan in the Saccharomyces cerevisiae cell wall. Eukaryot. Cell 8, 1626–1636 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cabib, E. et al. Assembly of the yeast cell wall. Crh1p and Crh2p act as transglycosylases in vivo and in vitro. J. Biol. Chem. 283, 29859–29872 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Blanco, N., Reidy, M., Arroyo, J. & Cabib, E. Cross-links in the cell wall of budding yeast control morphogenesis at the mother–bud neck. J. Cell Sci. 125, 5781–5789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lew, D. J. The morphogenesis checkpoint: how yeast cells watch their figures. Curr. Opin. Cell Biol. 15, 648–653 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. DeMarini, D. J. et al. A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. J. Cell Biol. 139, 75–93 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kozubowski, L. et al. A Bni-Glc7 phosphatase complex that recruits chitin synthase to the site of bud emergence. Mol. Biol. Cell 14, 26–39 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rodríguez-Peña, J. M., Rodríguez, C., Alvarez, A., Nombela, C. & Arroyo, J. Mechanism for targeting of the Saccharomyces cerevisiae GPI-anchored cell wall protein Crh2p to polarised growth sites. J. Cell Sci. 115, 2549–2558 (2002).

    PubMed  Google Scholar 

  57. Dobbelaere, J. & Barral, Y. Spatial coordination of cytokinetic events by compartmentalization of the cell cortex. Science 305, 393–396 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Oh, Y. & Bi, E. Septin structure and function in yeast and beyond. Trends Cell Biol. 21, 141–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Bertin, A. et al. Three-dimensional ultrastructure of the septin filament network in Saccharomyces cerevisiae. Mol. Biol. Cell 23, 423–432 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Richman, T. J., Sawyer, M. M. & Johnson, D. I. The Cdc42p GTPase is involved in a G2/M morphogenetic checkpoint regulating the apical-isotropic switch and nuclear division in yeast. J. Biol. Chem. 274, 16861–16870 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Wessels, J. G. H. Cell wall synthesis in apical hyphal growth. Int. Rev. Cytol. 104, 37–79 (1986).

    Article  CAS  Google Scholar 

  62. Fayant, P. et al. Finite element model of polar growth of pollen tubes. Plant Cell 22, 2579–2593 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wolf, S., Hématy, K. & Höfte, H. Growth control and cell wall signaling in plants. Annu. Rev. Plant Biol. 63, 381–407 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Hayashi, T. & Kaida, R. Functions of xyloglucan in plant cells. Mol. Plant 4, 17–24 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Hrmova, M., Farkas, V., Lahnstein, J. & Fincher, G. B. A barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1,3;1,4)-β-D-glucans. J. Biol. Chem. 282, 12951–12962 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Cavalier, D. M. et al. Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 20, 1519–1537 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank V. Cid, O. Cohen-Fix, P. Pérez, M. Reidy and C. Vázquez de Aldana for critical reading of the manuscript, and R. García for help with the figures. E.C. was supported by a US National Institutes of Health grant (as part of the Intramural Research Program of the National Institutes of Diabetes and Digestive and Kidney Diseases). J.A. acknowledges all the members of his laboratory for their dedicated work, and C. Nombela and the Special Chair in Genomics and Proteomics for their support. Research in the J.A. laboratory is supported by the Spanish Government Ministry of Economy and Competitiveness (grant BIO2010-22146), the Universidad Complutense de Madrid (grant GR58/08), the Comunidad de Madrid (grant S2010/BDM-2414) and the European Science Foundation (grant 06-RNP-132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Cabib.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabib, E., Arroyo, J. How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. Nat Rev Microbiol 11, 648–655 (2013). https://doi.org/10.1038/nrmicro3090

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3090

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing